These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 15366873)
1. Site-specific variations of carbonyl chemical shift anisotropies in proteins. Markwick PR; Sattler M J Am Chem Soc; 2004 Sep; 126(37):11424-5. PubMed ID: 15366873 [TBL] [Abstract][Full Text] [Related]
2. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. Loth K; Pelupessy P; Bodenhausen G J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707 [TBL] [Abstract][Full Text] [Related]
3. Parameterization of peptide 13C carbonyl chemical shielding anisotropy in molecular dynamics simulations. Jordan DM; Mills KM; Andricioaei I; Bhattacharya A; Palmo K; Zuiderweg ER Chemphyschem; 2007 Jun; 8(9):1375-85. PubMed ID: 17526036 [TBL] [Abstract][Full Text] [Related]
4. Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR. Cisnetti F; Loth K; Pelupessy P; Bodenhausen G Chemphyschem; 2004 Jun; 5(6):807-14. PubMed ID: 15253308 [TBL] [Abstract][Full Text] [Related]
5. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
6. NMR chemical shift powder pattern recoupling at high spinning speed and theoretical tensor evaluation applied to silk fibroin. Witter R; Sternberg U; Ulrich AS J Am Chem Soc; 2006 Feb; 128(7):2236-43. PubMed ID: 16478177 [TBL] [Abstract][Full Text] [Related]
7. Determination of chemical shift anisotropies of unresolved carbonyl sites by C-alpha detection under magic-angle spinning. Mou Y; Chen PH; Lee HW; Chan JC J Magn Reson; 2007 Aug; 187(2):352-6. PubMed ID: 17524685 [TBL] [Abstract][Full Text] [Related]
8. Using the chemical shift anisotropy tensor of carbonyl backbone nuclei as a probe of secondary structure in proteins. Elavarasi SB; Kumari A; Dorai K J Phys Chem A; 2010 May; 114(18):5830-7. PubMed ID: 20402537 [TBL] [Abstract][Full Text] [Related]
9. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications. Precechtelová J; Padrta P; Munzarová ML; Sklenár V J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109 [TBL] [Abstract][Full Text] [Related]
10. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. Wylie BJ; Rienstra CM J Chem Phys; 2008 Feb; 128(5):052207. PubMed ID: 18266412 [TBL] [Abstract][Full Text] [Related]
11. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints. Hansen AL; Al-Hashimi HM J Magn Reson; 2006 Apr; 179(2):299-307. PubMed ID: 16431143 [TBL] [Abstract][Full Text] [Related]
12. Limited variations in 15N CSA magnitudes and orientations in ubiquitin are revealed by joint analysis of longitudinal and transverse NMR relaxation. Damberg P; Jarvet J; Gräslund A J Am Chem Soc; 2005 Feb; 127(6):1995-2005. PubMed ID: 15701036 [TBL] [Abstract][Full Text] [Related]
13. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes. Tate S; Shimahara H; Utsunomiya-Tate N J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755 [TBL] [Abstract][Full Text] [Related]
14. Secondary structures of peptides and proteins via NMR chemical-shielding anisotropy (CSA) parameters. Czinki E; Császár AG; Magyarfalvi G; Schreiner PR; Allen WD J Am Chem Soc; 2007 Feb; 129(6):1568-77. PubMed ID: 17284001 [TBL] [Abstract][Full Text] [Related]
15. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. Ying J; Grishaev A; Bryce DL; Bax A J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267 [TBL] [Abstract][Full Text] [Related]
16. Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins. Wylie BJ; Sperling LJ; Rienstra CM Phys Chem Chem Phys; 2008 Jan; 10(3):405-13. PubMed ID: 18174982 [TBL] [Abstract][Full Text] [Related]
17. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy. Bryce DL; Grishaev A; Bax A J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of two simplified 15N-NMR methods for determining micros-ms dynamics of proteins. Hass MA; Led JJ Magn Reson Chem; 2006 Aug; 44(8):761-9. PubMed ID: 16705625 [TBL] [Abstract][Full Text] [Related]
19. Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy. Duchardt E; Richter C; Ohlenschläger O; Görlach M; Wöhnert J; Schwalbe H J Am Chem Soc; 2004 Feb; 126(7):1962-70. PubMed ID: 14971929 [TBL] [Abstract][Full Text] [Related]
20. Protein dynamics by ¹⁵N nuclear magnetic relaxation. Ferrage F Methods Mol Biol; 2012; 831():141-63. PubMed ID: 22167673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]