These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 15366978)
1. On the role of van der Waals interaction in chemical reactions at low temperatures. Balakrishnan N J Chem Phys; 2004 Sep; 121(12):5563-6. PubMed ID: 15366978 [TBL] [Abstract][Full Text] [Related]
2. Ultracold collisions and reactions of vibrationally excited OH radicals with oxygen atoms. Juanes-Marcos JC; Quéméner G; Kendrick BK; Balakrishnan N Phys Chem Chem Phys; 2011 Nov; 13(42):19067-76. PubMed ID: 21674116 [TBL] [Abstract][Full Text] [Related]
3. Role of van der Waals resonances in the vibrational relaxation of HF by collisions with H atoms. Tao L; Alexander MH J Chem Phys; 2007 Sep; 127(11):114301. PubMed ID: 17887831 [TBL] [Abstract][Full Text] [Related]
4. Quantum mechanical investigation of rovibrational relaxation of H2 and D2 by collisions with Ar atoms. Uudus N; Magaki S; Balakrishnan N J Chem Phys; 2005 Jan; 122(2):024304. PubMed ID: 15638583 [TBL] [Abstract][Full Text] [Related]
5. Heavy atom tunneling in chemical reactions: study of H + LiF collisions. Weck PF; Balakrishnan N J Chem Phys; 2005 Jun; 122(23):234310. PubMed ID: 16008444 [TBL] [Abstract][Full Text] [Related]
6. Quantum dynamics of the Li + HF --> H + LiF reaction at ultralow temperatures. Weck PF; Balakrishnan N J Chem Phys; 2005 Apr; 122(15):154309. PubMed ID: 15945637 [TBL] [Abstract][Full Text] [Related]
7. Reactivity enhancement of ultracold O(3P)+H2 collisions by van der Waals interactions. Weck PF; Balakrishnan N J Chem Phys; 2005 Oct; 123(14):144308. PubMed ID: 16238392 [TBL] [Abstract][Full Text] [Related]
8. Cold and ultracold chemical reactions of F+HCl and F+DCl. Quéméner G; Balakrishnan N J Chem Phys; 2008 Jun; 128(22):224304. PubMed ID: 18554010 [TBL] [Abstract][Full Text] [Related]
9. On the role of scattering resonances in the F+HD reaction dynamics. De Fazio D; Cavalli S; Aquilanti V; Buchachenko AA; Tscherbul TV J Phys Chem A; 2007 Dec; 111(49):12538-49. PubMed ID: 17997533 [TBL] [Abstract][Full Text] [Related]
10. A close-coupling study of vibrational-rotational quenching of CO by collision with hydrogen atoms. Yang B; Stancil PC; Balakrishnan N J Chem Phys; 2005 Sep; 123(9):94308. PubMed ID: 16164346 [TBL] [Abstract][Full Text] [Related]
11. Competition between electronic and vibrational predissociation dynamics of the HeBr2 and NeBr2 van der Waals molecules. Taylor MA; Pio JM; van der Veer WE; Janda KC J Chem Phys; 2010 Mar; 132(10):104309. PubMed ID: 20232962 [TBL] [Abstract][Full Text] [Related]
12. The role of symmetry and optical selection rules in revealing the molecular structure of the lowest Rydberg and ionic states of the 1,4-diazabicyclo[2.2.2]octane-Arn (n = 1,2,3) van der Waals complexes. Belcher DE; Watkins MJ; Tonge N; Cockett MC J Chem Phys; 2004 May; 120(17):7894-900. PubMed ID: 15267704 [TBL] [Abstract][Full Text] [Related]
13. Semiclassical dynamics of the van der Waals states in O3(X1A1). Joyeux M; Schinke R; Grebenshchikov SY J Chem Phys; 2004 Apr; 120(16):7426-37. PubMed ID: 15267653 [TBL] [Abstract][Full Text] [Related]
14. Competition between adiabatic and nonadiabatic fragmentation pathways in the unimolecular decay of the ArI2(B) van der Waals complex. Roncero O; Buchachenko AA; Lepetit B J Chem Phys; 2005 Jan; 122(3):34303. PubMed ID: 15740197 [TBL] [Abstract][Full Text] [Related]
15. The spin-orbit transition of atomic chlorine in solid H2, HD, and D2. Raston PL; Anderson DT J Chem Phys; 2007 Jan; 126(2):021106. PubMed ID: 17228934 [TBL] [Abstract][Full Text] [Related]
16. Rotational quenching of CO2 by collision with He atoms. Yang B; Stancil PC J Chem Phys; 2009 Apr; 130(13):134319. PubMed ID: 19355744 [TBL] [Abstract][Full Text] [Related]
17. Collisional stabilization of van der Waals states of ozone. Ivanov MV; Babikov D J Chem Phys; 2011 May; 134(17):174308. PubMed ID: 21548688 [TBL] [Abstract][Full Text] [Related]
18. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. I. Calculation of Ne-CO van der Waals spectra. Dham AK; McCourt FR; Meath WJ J Chem Phys; 2009 Jun; 130(24):244310. PubMed ID: 19566156 [TBL] [Abstract][Full Text] [Related]
19. Computing van der Waals energies in the context of the rotamer approximation. Grigoryan G; Ochoa A; Keating AE Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777 [TBL] [Abstract][Full Text] [Related]
20. Collisional and photoinitiated reaction dynamics in the ground electronic state of Ca-HCl. Sanz C; van der Avoird A; Roncero O J Chem Phys; 2005 Aug; 123(6):64301. PubMed ID: 16122302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]