BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15368240)

  • 1. Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth.
    Zhu H; Ji J; Barbosa MA; Shen J
    J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):159-65. PubMed ID: 15368240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoblast growth promotion by protein electrostatic self-assembly on biodegradable poly(lactide).
    Zhu H; Ji J; Shen J
    J Biomater Sci Polym Ed; 2005; 16(6):761-74. PubMed ID: 16028595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.
    Zhu H; Ji J; Shen J
    Biomacromolecules; 2004; 5(5):1933-9. PubMed ID: 15360308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules.
    Zhu H; Ji J; Tan Q; Barbosa MA; Shen J
    Biomacromolecules; 2003; 4(2):378-86. PubMed ID: 12625735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility.
    Zhu H; Ji J; Shen J
    Biomaterials; 2004 Jan; 25(1):109-17. PubMed ID: 14580914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of osteoblast-like MC3T3-E1 cell responses by poly(lactide).
    Ikarashi Y; Tsuchiya T; Kaniwa M; Nakamura A
    Biol Pharm Bull; 2000 Dec; 23(12):1470-6. PubMed ID: 11145180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing effect of poly(L-lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells.
    Isama K; Tsuchiya T
    Biomaterials; 2003 Aug; 24(19):3303-9. PubMed ID: 12763458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IGF-I and TGF-beta 1 incorporated in a poly(D,L-lactide) implant coating maintain their activity over long-term storage-cell culture studies on primary human osteoblast-like cells.
    Wildemann B; Lübberstedt M; Haas NP; Raschke M; Schmidmaier G
    Biomaterials; 2004 Aug; 25(17):3639-44. PubMed ID: 15020138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications.
    Kim K; Yu M; Zong X; Chiu J; Fang D; Seo YS; Hsiao BS; Chu B; Hadjiargyrou M
    Biomaterials; 2003 Dec; 24(27):4977-85. PubMed ID: 14559011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.
    Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin sponges (Gelfoam) as a scaffold for osteoblasts.
    Rohanizadeh R; Swain MV; Mason RS
    J Mater Sci Mater Med; 2008 Mar; 19(3):1173-82. PubMed ID: 17701305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly (D,L-lactide) scaffolds.
    Chim H; Ong JL; Schantz JT; Hutmacher DW; Agrawal CM
    J Biomed Mater Res A; 2003 Jun; 65(3):327-35. PubMed ID: 12746879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heat treatment of poly(L-lactide) on the response of osteoblast-like MC3T3-E1 cells.
    Ikarashi Y; Tsuchiya T; Nakamura A
    Biomaterials; 2000 Jun; 21(12):1259-67. PubMed ID: 10811307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite.
    Jaiswal AK; Chhabra H; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp.
    Wang JL; Chen Q; Du BB; Cao L; Lin H; Fan ZY; Dong J
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():60-69. PubMed ID: 29549950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.