BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15368265)

  • 1. In vitro study of human vascular endothelial cell function on materials with various surface roughness.
    Xu C; Yang F; Wang S; Ramakrishna S
    J Biomed Mater Res A; 2004 Oct; 71(1):154-61. PubMed ID: 15368265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.
    Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 Jan; 25(1):53-61. PubMed ID: 14580908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined strategy to reduce restenosis for vascular tissue engineering applications.
    Patel HJ; Su SH; Patterson C; Nguyen KT
    Biotechnol Prog; 2006; 22(1):38-44. PubMed ID: 16454490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biocompatibility of different polyester membranes.
    Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X
    Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of endothelial cells regulated by a dynamically changed microenvironment of biodegradable PLLA-PC.
    Chen Y; Chen N; Qiu Z; Wang L; Wan C; Luo X; Li S
    Macromol Biosci; 2009 May; 9(5):413-20. PubMed ID: 19116893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering.
    He W; Yong T; Teo WE; Ma Z; Ramakrishna S
    Tissue Eng; 2005; 11(9-10):1574-88. PubMed ID: 16259611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth.
    He W; Ma Z; Yong T; Teo WE; Ramakrishna S
    Biomaterials; 2005 Dec; 26(36):7606-15. PubMed ID: 16000219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurethane blended with polylactides for improved cell adhesion and reduced platelet activation.
    Hsu SH; Tseng HJ; Fang ZK
    Artif Organs; 1999 Oct; 23(10):958-61. PubMed ID: 10610681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Elaboration of biodegradable polymer substrate for cultivation of human dermal fibroblasts].
    Shved IuA; Kukhareva LV; Zorin IM; Solov'ev AIu; Blinova MI; Bilibin AIu; Pinaev GP
    Tsitologiia; 2006; 48(2):161-8. PubMed ID: 16737184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D,L-lactic acid) blends.
    Simon CG; Eidelman N; Kennedy SB; Sehgal A; Khatri CA; Washburn NR
    Biomaterials; 2005 Dec; 26(34):6906-15. PubMed ID: 15939467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates.
    Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS
    Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ammonia plasma treatment on the properties and cytocompatibility of a poly(L-lactic acid) film surface.
    Jiao Y; Xu J; Zhou C
    J Biomater Sci Polym Ed; 2012; 23(6):763-77. PubMed ID: 21477458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods.
    Zhu Y; Gao C; Liu Y; Shen J
    J Biomed Mater Res A; 2004 Jun; 69(3):436-43. PubMed ID: 15127390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.
    Solouk A; Cousins BG; Mirahmadi F; Mirzadeh H; Nadoushan MR; Shokrgozar MA; Seifalian AM
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():400-8. PubMed ID: 25492004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular responses of vascular smooth muscle cells to paclitaxel-eluting bioresorbable stent materials.
    Nguyen KT; Shaikh N; Wawro D; Zhang S; Schwade ND; Eberhart RC; Tang L
    J Biomed Mater Res A; 2004 Jun; 69(3):513-24. PubMed ID: 15127398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.