These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1536869)

  • 1. Biosynthesis of cholic acid accelerated by diabetes: its mechanism and effect of vanadate administration.
    Kimura K; Ogura Y; Ogura M
    Biochim Biophys Acta; 1992 Feb; 1123(3):303-8. PubMed ID: 1536869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased rate of cholic acid formation from 3 alpha,7 alpha-dihydroxy-5 beta-cholestane in perfused livers from diabetic rats.
    Kimura K; Ogura Y; Ogura M
    Biochim Biophys Acta; 1988 Nov; 963(2):329-32. PubMed ID: 3058213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vanadate on the metabolism of bile acids in diabetic rats.
    Ogura Y; Suzuki T; Yamamoto Y; Ogura M
    Biol Chem Hoppe Seyler; 1991 May; 372(5):345-9. PubMed ID: 1872997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of diabetes on the metabolism of chenodeoxycholic acid in isolated perfused rat liver.
    Ogura Y; Ayaki Y
    Biol Chem Hoppe Seyler; 1987 Jul; 368(7):813-7. PubMed ID: 3304341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference between cholic acid and chenodeoxycholic acid in dependence upon cholesterol of hepatic and plasmatic sources as the precursor in rats.
    Ayaki Y; Ogura Y; Kitayama S; Endo S; Ogura M
    Steroids; 1983 Apr; 41(4):509-20. PubMed ID: 6658889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger.
    Kase BF; Björkhem I; Hågå P; Pedersen JI
    J Clin Invest; 1985 Feb; 75(2):427-35. PubMed ID: 3973012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered bile acid metabolism in nonobese, spontaneously diabetic (NOD) mice.
    Uchida K; Makino S; Akiyoshi T
    Diabetes; 1985 Jan; 34(1):79-83. PubMed ID: 3964756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid.
    Kase BF; Pedersen JI; Strandvik B; Björkhem I
    J Clin Invest; 1985 Dec; 76(6):2393-402. PubMed ID: 4077985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of bile acids in cerebrotendinous xanthomatosis. Relationship of bile acid pool sizes and synthesis rates to hydroxylations at C-12, C-25, and C-26.
    Salen G; Shefer S; Tint GS; Nicolau G; Dayal B; Batta AK
    J Clin Invest; 1985 Aug; 76(2):744-51. PubMed ID: 4031069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered bile acid metabolism in alloxan diabetic rats.
    Uchida K; Takase H; Kadowaki M; Nomura Y; Matsubara T; Takeuchi N
    Jpn J Pharmacol; 1979 Aug; 29(4):553-62. PubMed ID: 537273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of 5 beta-cholestane-3 alpha,7 alpha-diol in ileectomized rats.
    Ogura Y; Kimura K; Ogura M; Miyamoto K; Nakabou Y
    Biol Chem Hoppe Seyler; 1993 Dec; 374(12):1123-7. PubMed ID: 8129858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile acid pool changes and regulation of cholate synthesis in experimental diabetes.
    Nervi FO; Severín CH; Valdivieso VD
    Biochim Biophys Acta; 1978 May; 529(2):212-23. PubMed ID: 656452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man.
    Swell L; Gustafsson J; Schwartz CC; Halloran LG; Danielsson H; Vlahcevic ZR
    J Lipid Res; 1980 May; 21(4):455-66. PubMed ID: 7381336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of diabetes and of 7 alpha-hydroxycholesterol infusion on the profile of bile acids secreted by the isolated rat livers.
    Ogura Y; Ito T; Ogura M
    Biol Chem Hoppe Seyler; 1986 Oct; 367(10):1095-9. PubMed ID: 3539141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of bile alcohols, 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol and 3 alpha,7 alpha,12 alpha-trihydroxy-26,27-dinor-5 beta-cholestan-24-one, in rats.
    Kibe A; Fukura M; Kihira K; Kuramoto T; Hoshita T
    J Biochem; 1981 Feb; 89(2):369-77. PubMed ID: 7240118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol gallstones in alloxan-diabetic mice.
    Akiyoshi T; Uchida K; Takase H; Nomura Y; Takeuchi N
    J Lipid Res; 1986 Sep; 27(9):915-24. PubMed ID: 3783046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased biliary cholesterol secretion in alloxan diabetic mice.
    Ishikawa Y; Uchida K; Akiyoshi T
    Jpn J Surg; 1984 Mar; 14(2):174-83. PubMed ID: 6748389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential bile acid precursors in plasma--possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man.
    Axelson M; Sjövall J
    J Steroid Biochem; 1990 Aug; 36(6):631-40. PubMed ID: 2214780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human hepatoblastoma cells (HepG2) and rat hepatoma cells are defective in important enzyme activities in the oxidation of the C27 steroid side chain in bile acid formation.
    Farrants AK; Nilsson A; Pedersen JI
    J Lipid Res; 1993 Dec; 34(12):2041-50. PubMed ID: 8301225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative aspects of the conversion of 5 beta-cholestane intermediates to bile acids in man.
    Schwartz CC; Cohen BI; Vlahcevic ZR; Gregory DH; Halloran LG; Kuramoto T; Mosbach EH; Swell L
    J Biol Chem; 1976 Oct; 251(20):6308-14. PubMed ID: 185209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.