BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15369293)

  • 1. Removal of organotins during sewage treatment: a case study.
    Voulvoulis N; Scrimshaw MD; Lester JN
    Environ Technol; 2004 Jun; 25(6):733-40. PubMed ID: 15369293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of organotins in sewage sludge during anaerobic digestion.
    Voulvoulis N; Lester JN
    Sci Total Environ; 2006 Dec; 371(1-3):373-82. PubMed ID: 17049584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption.
    Ophithakorn T; Sabah A; Delalonde M; Bancon-Montigny C; Suksaroj TT; Wisniewski C
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22832-22842. PubMed ID: 27568196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic biodegradation of organotin compounds in activated sludge batch reactors.
    Stasinakis AS; Thomaidis NS; Nikolaou A; Kantifes A
    Environ Pollut; 2005 Apr; 134(3):431-8. PubMed ID: 15620588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of plants on TBT-contaminated harbour sludge and effect on TBT removal.
    Novak J; Trapp S
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):332-41. PubMed ID: 16305139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of tributyltin in shipyard waters and removal through laboratory and full-scale treatment.
    Prasad R; Schafran GC
    Water Res; 2006 Feb; 40(3):453-62. PubMed ID: 16405946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TBT and TPhT persistence in a sludged soil.
    Marcic C; Le Hecho I; Denaix L; Lespes G
    Chemosphere; 2006 Dec; 65(11):2322-32. PubMed ID: 16820191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.
    Sabah A; Bancon-Montigny C; Rodier C; Marchand P; Delpoux S; Ijjaali M; Tournoud MG
    Chemosphere; 2016 Feb; 144():2497-506. PubMed ID: 26624956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organotin speciation and tissue distribution in rat dams, fetuses, and neonates following oral administration of tributyltin chloride.
    Cooke GM; Forsyth DS; Bondy GS; Tachon R; Tague B; Coady L
    J Toxicol Environ Health A; 2008; 71(6):384-95. PubMed ID: 18246498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment.
    Heidler J; Sapkota A; Halden RU
    Environ Sci Technol; 2006 Jun; 40(11):3634-9. PubMed ID: 16786704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and removal of fungicides in municipal sewage treatment plant.
    Stamatis N; Hela D; Konstantinou I
    J Hazard Mater; 2010 Mar; 175(1-3):829-35. PubMed ID: 19942349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of fragrance materials during U.S. and European wastewater treatment.
    Simonich SL; Federle TW; Eckhoff WS; Rottiers A; Webb S; Sabaliunas D; de Wolf W
    Environ Sci Technol; 2002 Jul; 36(13):2839-47. PubMed ID: 12144256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phthalate removal throughout wastewater treatment plant: case study of Marne Aval station (France).
    Dargnat C; Teil MJ; Chevreuil M; Blanchard M
    Sci Total Environ; 2009 Feb; 407(4):1235-44. PubMed ID: 19036415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and removal of metals in urban wastewater treatment plants.
    Ustün GE
    J Hazard Mater; 2009 Dec; 172(2-3):833-8. PubMed ID: 19683867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake.
    Gbondo-Tugbawa SS; McAlear JA; Driscoll CT; Sharpe CW
    Water Res; 2010 May; 44(9):2863-75. PubMed ID: 20303566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass balance assessment of triclosan removal during conventional sewage treatment.
    Heidler J; Halden RU
    Chemosphere; 2007 Jan; 66(2):362-9. PubMed ID: 16766013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and effects of triclosan in activated sludge.
    Federle TW; Kaiser SK; Nuck BA
    Environ Toxicol Chem; 2002 Jul; 21(7):1330-7. PubMed ID: 12109731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Removal efficiency and mechanism of aqueous humic acids by activated sludge process].
    Fang F; Liu GQ; Guo JS; Liu ZP; Chen P
    Huan Jing Ke Xue; 2008 Aug; 29(8):2266-70. PubMed ID: 18839583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.