These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1536934)

  • 1. A moderately repeated DNA sequence of wheat and rye genomes.
    Dobrzańska M; Szurmak B
    Plant Mol Biol; 1992 Feb; 18(3):603-5. PubMed ID: 1536934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large DNA repeat of the dispersion pattern common to wheat and rye genomes.
    Szurmak B; Dobrzanska M
    Plant Mol Biol; 1993 Mar; 21(5):919-21. PubMed ID: 8467084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat.
    McIntyre CL; Pereira S; Moran LB; Appels R
    Genome; 1990 Oct; 33(5):635-40. PubMed ID: 2262137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of a recombining-repeat-sequence family in the mitochondrial genomes of wheat (Triticum aestivum L.) and rye (Secale cereale L.).
    Coulthart MB; Spencer DF; Gray MW
    Curr Genet; 1993 Mar; 23(3):255-64. PubMed ID: 8435855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence organisation analysis of the wheat and rye genomes by interspecies DNA/DNA hybridisation.
    Rimpau J; Smith D; Flavell R
    J Mol Biol; 1978 Aug; 123(3):327-59. PubMed ID: 691051
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural heterogeneity in the R173 family of rye-specific repetitive DNA sequences.
    Rogowsky PM; Liu JY; Manning S; Taylor C; Langridge P
    Plant Mol Biol; 1992 Oct; 20(1):95-102. PubMed ID: 1325206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chromosomal organization of simple sequence repeats in wheat and rye genomes.
    Cuadrado A; Schwarzacher T
    Chromosoma; 1998 Dec; 107(8):587-94. PubMed ID: 9933412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of disperse repetitive sequences in wheat/rye genome adjustment.
    Tomás D; Bento M; Viegas W; Silva M
    Int J Mol Sci; 2012; 13(7):8549-8561. PubMed ID: 22942719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat.
    Ko JM; Do GS; Suh DY; Seo BB; Shin DC; Moon HP
    Genome; 2002 Feb; 45(1):157-64. PubMed ID: 11908658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of DNA sequences in wheat and its relatives: the Dgas44 and R350 families of repetitive sequences.
    McNeil D; Lagudah ES; Hohmann U; Appels R
    Genome; 1994 Apr; 37(2):320-7. PubMed ID: 8200519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimized fluorescence in situ hybridization procedure for detecting rye chromosomes in wheat.
    Nkongolo KK; Lapitan NL; Quick JS; Muhlmann MD
    Genome; 1993 Aug; 36(4):701-5. PubMed ID: 8405987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance, variability and chromosomal location of microsatellites in wheat.
    Röder MS; Plaschke J; König SU; Börner A; Sorrells ME; Tanksley SD; Ganal MW
    Mol Gen Genet; 1995 Feb; 246(3):327-33. PubMed ID: 7854317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rye chromosome-specific polymerase chain reaction products developed by primers designed from the EcoO109I recognition site.
    Tomita M; Seno A
    Genome; 2012 May; 55(5):370-82. PubMed ID: 22563759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Painting the rye genome with genome-specific sequences.
    González-García M; Cuacos M; González-Sánchez M; Puertas MJ; Vega JM
    Genome; 2011 Jul; 54(7):555-64. PubMed ID: 21751868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A PCR assay for detection of a 2RL.2BS wheat-rye chromosome translocation.
    Lee JH; Graybosch RA; Kaeppler SM; Sears RG
    Genome; 1996 Jun; 39(3):605-8. PubMed ID: 8675004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat-rye derivatives.
    Sánchez-Morán E; Benavente E; Orellana J
    Heredity (Edinb); 1999 Sep; 83 ( Pt 3)():249-52. PubMed ID: 10504421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerase chain reaction based mapping of rye involving repeated DNA sequences.
    Rogowsky PM; Shepherd KW; Langridge P
    Genome; 1992 Aug; 35(4):621-6. PubMed ID: 1526474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat-rye amphiploids.
    Tang ZX; Fu SL; Ren ZL; Zhou JP; Yan BJ; Zhang HQ
    Genome; 2008 Jun; 51(6):399-408. PubMed ID: 18521118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic subtraction recovers rye-specific DNA elements enriched in the rye genome.
    Tomita M; Akai K; Morimoto T
    Mol Biotechnol; 2009 Jun; 42(2):160-7. PubMed ID: 19288229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ hybridization as a rapid means to assess meiotic pairing and detection of alien DNA transfers in interphase cells of wide crosses involving wheat and rye.
    Le HT; Armstrong KC
    Mol Gen Genet; 1991 Jan; 225(1):33-7. PubMed ID: 2000089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.