These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 15369400)
1. Synthesis, electrochemistry, and bioactivity of the cyanobacterial calothrixins and related quinones. Bernardo PH; Chai CL; Heath GA; Mahon PJ; Smith GD; Waring P; Wilkes BA J Med Chem; 2004 Sep; 47(20):4958-63. PubMed ID: 15369400 [TBL] [Abstract][Full Text] [Related]
2. Structure-activity delineation of quinones related to the biologically active Calothrixin B. Bernardo PH; Chai CL; Le Guen M; Smith GD; Waring P Bioorg Med Chem Lett; 2007 Jan; 17(1):82-5. PubMed ID: 17098429 [TBL] [Abstract][Full Text] [Related]
3. Cyanobacterial Metabolite Calothrixins: Recent Advances in Synthesis and Biological Evaluation. Xu S; Nijampatnam B; Dutta S; Velu SE Mar Drugs; 2016 Jan; 14(1):17. PubMed ID: 26771620 [TBL] [Abstract][Full Text] [Related]
4. Computation of the redox and protonation properties of quinones: towards the prediction of redox cycling natural products. Cape JL; Bowman MK; Kramer DM Phytochemistry; 2006 Aug; 67(16):1781-8. PubMed ID: 16872647 [TBL] [Abstract][Full Text] [Related]
5. Novel quinolinequinone antitumor agents: structure-metabolism studies with NAD(P)H:quinone oxidoreductase (NQO1). Fryatt T; Pettersson HI; Gardipee WT; Bray KC; Green SJ; Slawin AM; Beall HD; Moody CJ Bioorg Med Chem; 2004 Apr; 12(7):1667-87. PubMed ID: 15028260 [TBL] [Abstract][Full Text] [Related]
6. Electrochemistry of potential bioreductive alkylating quinones: its use in the development of new aziridinylquinones. Driebergen RJ; Holthuis JJ; Hulshoff A; Postma-Kelder SJ; Verboom W; Reinhoudt DN; Lelieveld P Anticancer Res; 1986; 6(4):605-19. PubMed ID: 3752941 [TBL] [Abstract][Full Text] [Related]
7. Biological activities of marine sesquiterpenoid quinones: structure-activity relationships in cytotoxic and hemolytic assays. Prokof'eva NG; Utkina NK; Chaikina EL; Makarchenko AE Comp Biochem Physiol B Biochem Mol Biol; 2004 Oct; 139(2):169-73. PubMed ID: 15465662 [TBL] [Abstract][Full Text] [Related]
8. Regioselective intramolecular reactions of 2-indolylacyl radicals with pyridines: a direct synthetic entry to ellipticine quinones. Bennasar ML; Roca T; Ferrando F J Org Chem; 2005 Oct; 70(22):9077-80. PubMed ID: 16238359 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic synthesis of the IDO inhibitors exiguamine A and B. Volgraf M; Lumb JP; Brastianos HC; Carr G; Chung MK; Münzel M; Mauk AG; Andersen RJ; Trauner D Nat Chem Biol; 2008 Sep; 4(9):535-7. PubMed ID: 18677305 [TBL] [Abstract][Full Text] [Related]
10. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile. Namazian M; Coote ML J Phys Chem A; 2007 Aug; 111(30):7227-32. PubMed ID: 17625811 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Verrax J; Delvaux M; Beghein N; Taper H; Gallez B; Buc Calderon P Free Radic Res; 2005 Jun; 39(6):649-57. PubMed ID: 16036343 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Hillard EA; de Abreu FC; Ferreira DC; Jaouen G; Goulart MO; Amatore C Chem Commun (Camb); 2008 Jun; (23):2612-28. PubMed ID: 18535688 [TBL] [Abstract][Full Text] [Related]
14. De novo design, synthesis, and characterization of quinoproteins. Li WW; Hellwig P; Ritter M; Haehnel W Chemistry; 2006 Sep; 12(27):7236-45. PubMed ID: 16819733 [TBL] [Abstract][Full Text] [Related]
15. An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system. Rodriguez CE; Shinyashiki M; Froines J; Yu RC; Fukuto JM; Cho AK Toxicology; 2004 Sep; 201(1-3):185-96. PubMed ID: 15297032 [TBL] [Abstract][Full Text] [Related]
16. Kinetic study of electrochemically induced michael reactions of o-quinones with Meldrum's acid derivatives. Synthesis of highly oxygenated catechols. Nematollahi D; Shayani-jam H J Org Chem; 2008 May; 73(9):3428-34. PubMed ID: 18396907 [TBL] [Abstract][Full Text] [Related]
17. Total synthesis of ellipticine quinones, olivacine, and calothrixin B. Ramkumar N; Nagarajan R J Org Chem; 2014 Jan; 79(2):736-41. PubMed ID: 24372379 [TBL] [Abstract][Full Text] [Related]
18. Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. Benites J; Valderrama JA; Rivera F; Rojo L; Campos N; Pedro M; José Nascimento MS Bioorg Med Chem; 2008 Jan; 16(2):862-8. PubMed ID: 17964791 [TBL] [Abstract][Full Text] [Related]
19. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols. Gong K; Zhu X; Zhao R; Xiong S; Mao L; Chen C Anal Chem; 2005 Dec; 77(24):8158-65. PubMed ID: 16351170 [TBL] [Abstract][Full Text] [Related]
20. Short-lived quinonoid species from 5,6-dihydroxyindole dimers en route to eumelanin polymers: integrated chemical, pulse radiolytic, and quantum mechanical investigation. Pezzella A; Panzella L; Crescenzi O; Napolitano A; Navaratman S; Edge R; Land EJ; Barone V; d'Ischia M J Am Chem Soc; 2006 Dec; 128(48):15490-8. PubMed ID: 17132016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]