These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15369672)

  • 21. CcpA-dependent carbon catabolite repression in bacteria.
    Warner JB; Lolkema JS
    Microbiol Mol Biol Rev; 2003 Dec; 67(4):475-90. PubMed ID: 14665673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation of serine-46 to aspartate in the histidine-containing protein of Escherichia coli mimics the inactivation by phosphorylation of serine-46 in HPrs from gram-positive bacteria.
    Napper S; Anderson JW; Georges F; Quail JW; Delbaere LT; Waygood EB
    Biochemistry; 1996 Sep; 35(35):11260-7. PubMed ID: 8784179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources.
    Singh KD; Schmalisch MH; Stülke J; Görke B
    J Bacteriol; 2008 Nov; 190(21):7275-84. PubMed ID: 18757537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.
    Seidel G; Diel M; Fuchsbauer N; Hillen W
    FEBS J; 2005 May; 272(10):2566-77. PubMed ID: 15885105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of HPr phosphorylation on structure, dynamics, and interactions in the course of transcriptional control.
    Homeyer N; Essigke T; Meiselbach H; Ullmann GM; Sticht H
    J Mol Model; 2007 Mar; 13(3):431-44. PubMed ID: 17139481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism.
    Monedero V; Poncet S; Mijakovic I; Fieulaine S; Dossonnet V; Martin-Verstraete I; Nessler S; Deutscher J
    EMBO J; 2001 Aug; 20(15):3928-37. PubMed ID: 11483496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation and mutational analysis of the HPr kinase/phosphorylase from Bacillus subtilis.
    Pompeo F; Granet Y; Lavergne JP; Grangeasse C; Nessler S; Jault JM; Galinier A
    Biochemistry; 2003 Jun; 42(22):6762-71. PubMed ID: 12779331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
    Lorca GL; Chung YJ; Barabote RD; Weyler W; Schilling CH; Saier MH
    J Bacteriol; 2005 Nov; 187(22):7826-39. PubMed ID: 16267306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription.
    Kim JH; Yang YK; Chambliss GH
    Mol Microbiol; 2005 Apr; 56(1):155-62. PubMed ID: 15773986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro binding of the CcpA protein of Bacillus megaterium to cis-acting catabolite responsive elements (CREs) of gram-positive bacteria.
    Ramseier TM; Reizer J; Küster E; Hillen W; Saier MH
    FEMS Microbiol Lett; 1995 Jun; 129(2-3):207-13. PubMed ID: 7607401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A; Martin-Verstraete I; Dupuy B
    Mol Microbiol; 2011 Feb; 79(4):882-99. PubMed ID: 21299645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The CcpA regulon of Streptococcus suis reveals novel insights into the regulation of the streptococcal central carbon metabolism by binding of CcpA to two distinct binding motifs.
    Willenborg J; de Greeff A; Jarek M; Valentin-Weigand P; Goethe R
    Mol Microbiol; 2014 Apr; 92(1):61-83. PubMed ID: 24673665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.
    Meyer FM; Jules M; Mehne FM; Le Coq D; Landmann JJ; Görke B; Aymerich S; Stülke J
    J Bacteriol; 2011 Dec; 193(24):6939-49. PubMed ID: 22001508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA.
    Kwon HJ; Bennik MH; Demple B; Ellenberger T
    Nat Struct Biol; 2000 May; 7(5):424-30. PubMed ID: 10802742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complementation of a Delta ccpA mutant of Lactobacillus casei with CcpA mutants affected in the DNA- and cofactor-binding domains.
    Esteban CD; Mahr K; Monedero V; Hillen W; Pérez-Martínez G; Titgemeyer F
    Microbiology (Reading); 2004 Mar; 150(Pt 3):613-620. PubMed ID: 14993310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 1.9 A resolution structure of phospho-serine 46 HPr from Enterococcus faecalis.
    Audette GF; Engelmann R; Hengstenberg W; Deutscher J; Hayakawa K; Quail JW; Delbaere LT
    J Mol Biol; 2000 Nov; 303(4):545-53. PubMed ID: 11054290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.