These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15369693)

  • 1. In vivo tissue response to resorbable silica xerogels as controlled-release materials.
    Radin S; El-Bassyouni G; Vresilovic EJ; Schepers E; Ducheyne P
    Biomaterials; 2005 Mar; 26(9):1043-52. PubMed ID: 15369693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material.
    Radin S; Ducheyne P
    Biomaterials; 2007 Mar; 28(9):1721-9. PubMed ID: 17184835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials.
    Radin S; Falaize S; Lee MH; Ducheyne P
    Biomaterials; 2002 Aug; 23(15):3113-22. PubMed ID: 12102182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The controlled release of drugs from emulsified, sol gel processed silica microspheres.
    Radin S; Chen T; Ducheyne P
    Biomaterials; 2009 Feb; 30(5):850-8. PubMed ID: 19010531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bisphosphonate complexation and calcium doping in silica xerogels as a combined strategy for local and controlled release of active platinum antitumor compounds.
    Margiotta N; Ostuni R; Teoli D; Morpurgo M; Realdon N; Palazzo B; Natile G
    Dalton Trans; 2007 Aug; (29):3131-9. PubMed ID: 17637988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules.
    Lai CY; Trewyn BG; Jeftinija DM; Jeftinija K; Xu S; Jeftinija S; Lin VS
    J Am Chem Soc; 2003 Apr; 125(15):4451-9. PubMed ID: 12683815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro controlled release of doxorubicin from silica xerogels.
    Prokopowicz M
    J Pharm Pharmacol; 2007 Oct; 59(10):1365-73. PubMed ID: 17910811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Na(2)CO(3), NaF and NH(4)OH on the stability and release behavior of sol-gel derived silica xerogels embedded with bioactive compounds.
    Morpurgo M; Teoli D; Pignatto M; Attrezzi M; Spadaro F; Realdon N
    Acta Biomater; 2010 Jun; 6(6):2246-53. PubMed ID: 20035908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections.
    Rauschmann MA; Wichelhaus TA; Stirnal V; Dingeldein E; Zichner L; Schnettler R; Alt V
    Biomaterials; 2005 May; 26(15):2677-84. PubMed ID: 15585271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Investigation of tissue reaction of apatite cement implants impregnated with vancomycin].
    Juszkiewicz W; Pielka S; Staniszewska-Kuś J; Paluch D
    Polim Med; 2003; 33(3):19-26. PubMed ID: 14696521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of vancomycin and teicoplanin from a plasticized and resorbable gelatin sponge: in vitro investigation of a new antibiotic delivery system with glycopeptides.
    Drognitz O; Thorn D; Krüger T; Gatermann SG; Iven H; Bruch HP; Muhl E
    Infection; 2006 Feb; 34(1):29-34. PubMed ID: 16501900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo release of vancomycin from biodegradable beads.
    Liu SJ; Wen-Neng Ueng S; Lin SS; Chan EC
    J Biomed Mater Res; 2002; 63(6):807-13. PubMed ID: 12418028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone engineering of the rabbit ulna.
    El-Ghannam A; Cunningham L; Pienkowski D; Hart A
    J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit.
    Merolli A; Nicolais L; Ambrosio L; Santin M
    Biomed Mater; 2010 Feb; 5(1):15008. PubMed ID: 20124667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo resorption of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate: a three-year subcutaneous implantation study.
    van Minnen B; van Leeuwen MB; Kors G; Zuidema J; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2008 Jun; 85(4):972-82. PubMed ID: 17907243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo study of biodegradable alginate antibiotic beads in rabbits.
    Ueng SW; Yuan LJ; Lee N; Lin SS; Chan EC; Weng JH
    J Orthop Res; 2004 May; 22(3):592-9. PubMed ID: 15099640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment.
    Dion A; Langman M; Hall G; Filiaggi M
    Biomaterials; 2005 Dec; 26(35):7276-85. PubMed ID: 16024076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between physicochemical properties of doxorubicin-loaded silica/polydimethylsiloxane xerogel and in vitro release of drug.
    Prokopowicz M
    Acta Biomater; 2009 Jan; 5(1):193-207. PubMed ID: 18755642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro release of cisplatin from sol-gel processed organically modified silica xerogels.
    Czarnobaj K; Lukasiak J
    J Mater Sci Mater Med; 2007 Oct; 18(10):2041-4. PubMed ID: 17558477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.