These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15369855)

  • 21. Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye.
    Leggate J; Allain R; Isaac L; Blais BW
    Biotechnol Lett; 2006 Oct; 28(19):1587-94. PubMed ID: 16937249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A fluorescence-based assay for measuring the viable cell concentration of mixed microbial communities in soil.
    Pascaud A; Amellal S; Soulas ML; Soulas G
    J Microbiol Methods; 2009 Jan; 76(1):81-7. PubMed ID: 18926862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence microscopy of NaCl-stressed, elongated Salmonella and Listeria cells reveals the presence of septa in filaments.
    Hazeleger WC; Dalvoorde M; Beumer RR
    Int J Food Microbiol; 2006 Dec; 112(3):288-90. PubMed ID: 16806551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing nuclei in skin cryosections: viable options to 4'6-diamidino-2-phenylindol for confocal laser microscopy.
    Gläser K; Wilke K; Wepf R; Biel SS
    Skin Res Technol; 2008 Aug; 14(3):324-6. PubMed ID: 19159379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives.
    Qin D; He X; Wang K; Tan W
    Biosens Bioelectron; 2008 Dec; 24(4):626-31. PubMed ID: 18672354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ analysis of native microbial communities in complex samples with high particulate loads.
    Barra Caracciolo A; Grenni P; Cupo C; Rossetti S
    FEMS Microbiol Lett; 2005 Dec; 253(1):55-8. PubMed ID: 16213678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes.
    Jing D; Beechem JM; Patton WF
    Electrophoresis; 2004 Aug; 25(15):2439-46. PubMed ID: 15300760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlorination effect on the fluorescence of nucleic acid staining dyes.
    Phe MH; Dossot M; Block JC
    Water Res; 2004 Oct; 38(17):3729-37. PubMed ID: 15350425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent.
    Thakur S; Cattoni DI; Nöllmann M
    Eur Biophys J; 2015 Jul; 44(5):337-48. PubMed ID: 26024786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.
    Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M
    Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methods to maximise the staining of fungal propagules with fluorescent dyes.
    Prigione V; Filipello Marchisio V
    J Microbiol Methods; 2004 Dec; 59(3):371-9. PubMed ID: 15488280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy.
    Lunau M; Lemke A; Walther K; Martens-Habbena W; Simon M
    Environ Microbiol; 2005 Jul; 7(7):961-8. PubMed ID: 15946292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria.
    Barbesti S; Citterio S; Labra M; Baroni MD; Neri MG; Sgorbati S
    Cytometry; 2000 Jul; 40(3):214-8. PubMed ID: 10878564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-situ enumeration and probing of pyrene-degrading soil bacteria.
    Jjemba PK; Kinkle BK; Shann JR
    FEMS Microbiol Ecol; 2006 Feb; 55(2):287-98. PubMed ID: 16420636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. UV-activated conversion of Hoechst 33258, DAPI, and Vybrant DyeCycle fluorescent dyes into blue-excited, green-emitting protonated forms.
    Zurek-Biesiada D; Kędracka-Krok S; Dobrucki JW
    Cytometry A; 2013 May; 83(5):441-51. PubMed ID: 23418106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow cytometric analysis of fluorescence in situ hybridization with dye dilution and DNA staining (flow-FISH-DDD) to determine telomere length dynamics in proliferating cells.
    Potter AJ; Wener MH
    Cytometry A; 2005 Nov; 68(1):53-8. PubMed ID: 16163702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nile blue A for staining Escherichia coli in flow cytometer experiments.
    Betscheider D; Jose J
    Anal Biochem; 2009 Jan; 384(1):194-6. PubMed ID: 18835376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser.
    Trägårdh J; Robb G; Amor R; Amos WB; Dempster J; McConnell G
    J Microsc; 2015 Sep; 259(3):210-8. PubMed ID: 25946127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants.
    Ivanova EP; Christen R; Bizet C; Clermont D; Motreff L; Bouchier C; Zhukova NV; Crawford RJ; Kiprianova EA
    Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2476-81. PubMed ID: 19622656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.