These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 153700)

  • 1. Electron microscopic localization of Mg2+ -dependent adenosine triphosphatase activity in the amphibian pancreas (Salamandra salamandra L. and Rana esculenta L.).
    Trandaburu T
    Acta Histochem; 1978; 62(2):263-75. PubMed ID: 153700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microperoxisomes and catalase peroxidatic activity in the pancreas of two amphibian species (Salamandra salamandra L. and Rana esculenta L.).
    Trandaburu T
    Acta Histochem; 1980; 66(1):135-45. PubMed ID: 6776774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structural localization of glucose-6-phosphatase activity in the pancreatic islets of two amphibian species (Salamandra salamandra L. and Rana esculenta L.).
    Trandaburu T
    Acta Histochem; 1977; 59(2):246-53. PubMed ID: 201137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural localization of adenyl cyclase activity in the pancreas of two amphibian species (Salamandra salamandra L. and Rana esculenta L.).
    Trandaburu T
    Histochemistry; 1976 Jul; 48(1):1-6. PubMed ID: 791901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of increased Waler salinity on the fine structure and acid phosphatase activity in frog pancreas (Rana temporaria L.).
    Trandaburu TT
    Z Mikrosk Anat Forsch; 1977; 91(2):321-33. PubMed ID: 307314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine triphosphatase activity in the membranes of the squid nerve fiber.
    Sabatini MT; Dipolo R; Villegas R
    J Cell Biol; 1968 Jul; 38(1):176-83. PubMed ID: 4233981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine triphosphatase localization in amphibian epidermis.
    Farquhar MG; Palade GE
    J Cell Biol; 1966 Aug; 30(2):359-79. PubMed ID: 4226195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochemical study of the distribution of adenosine triphosphatase in the pancreas of the dog.
    Koenig CS; Santelices LC; Vial JD
    J Histochem Cytochem; 1976 Oct; 24(10):1065-75. PubMed ID: 135806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atrial natriuretic factor and exocrine pancreas: autoradiographic localization of binding sites and ultrastructural evidence for internalization of endogenous ANF.
    Chabot JG; Morel G; Kopelman H; Belles-Isles M; Heisler S
    Pancreas; 1987; 2(4):404-13. PubMed ID: 2819860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mg2+-dependent adenosine triphosphatase as an enzyme histochemical marker for the lymphomas of B-cell origin.
    Harigaya K; Mikata A; Suzuki H; Ohishi T; Kageyama K; Minato K; Shimoyama M
    Am J Pathol; 1979 Nov; 97(2):359-80. PubMed ID: 160756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of the pathways of substance transport into the acinar cells].
    Ter-Akopova IR; Bukhvalov IB
    Biull Eksp Biol Med; 1977 Aug; 84(8):242-4. PubMed ID: 143297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation by electron microscopy of the nucleoside phosphatase activity of amphibian and mammalian erythrocytes.
    Tooze J
    J Cell Biol; 1965 Jul; 26(1):209-17. PubMed ID: 4221862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Distribution of Mg-activated ATPase activity in the sensorimotor cortex (electron-cytochemical study)].
    Kleshchinov VN
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1979; 79(7):848-52. PubMed ID: 157139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-magnesium interactions in pancreatic acinar cells.
    Mooren FC; Turi S; Gunzel D; Schlue WR; Domschke W; Singh J; Lerch MM
    FASEB J; 2001 Mar; 15(3):659-72. PubMed ID: 11259384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of nucleolar substructure in cultured human fibroblasts by magnesium-activated adenosine triphosphatase reaction.
    Fox N; Fernandez C; Studzinski GP
    J Histochem Cytochem; 1981 Oct; 29(10):1115-20. PubMed ID: 6117591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultracytochemical localization of Ca++-ATPase activity in the paraphyseal epithelial cells of the frog, Rana esculenta.
    Ueno S; Umar H; Bambauer HJ; Ueck M
    Cell Tissue Res; 1984; 235(1):3-11. PubMed ID: 6230154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of adenosine triphosphatase activity on the chloroplast envelope in tendrils of Pisum sativum.
    Sabnis DD; Gordon M; Galston AW
    Plant Physiol; 1970 Jan; 45(1):25-32. PubMed ID: 4245003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscopic localization of 3beta-hydroxysteroid dehydrogenase and NADH-ferricyanide reductase activities in amphibian interrenal cells.
    Berchtold JP
    Cell Tissue Res; 1978 Mar; 188(1):143-8. PubMed ID: 305825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light and electron microscopic study on complex carbohydrates in the testis of Salamandra salamandra L. (Amphibia, Urodela).
    Schindelmeiser J
    Acta Histochem; 1986; 78(2):189-95. PubMed ID: 2941965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations on the blood-testis barrier in a frog and a salamander.
    Bergmann M; Greven H; Schindelmeiser J
    Cell Tissue Res; 1983; 232(1):189-200. PubMed ID: 6603909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.