These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15370280)

  • 1. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach.
    Søe AR; Bartram S; Gatto N; Boland W
    Isotopes Environ Health Stud; 2004 Sep; 40(3):175-80. PubMed ID: 15370280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of HMGR in homeostasis of sequestered and de novo produced precursors of the iridoid biosynthesis in leaf beetle larvae.
    Burse A; Frick S; Schmidt A; Buechler R; Kunert M; Gershenzon J; Brandt W; Boland W
    Insect Biochem Mol Biol; 2008 Jan; 38(1):76-88. PubMed ID: 18070667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense.
    Kunert M; Søe A; Bartram S; Discher S; Tolzin-Banasch K; Nie L; David A; Pasteels J; Boland W
    Insect Biochem Mol Biol; 2008 Oct; 38(10):895-904. PubMed ID: 18687400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridoid biosynthesis in Chrysomelina larvae: Fat body produces early terpenoid precursors.
    Burse A; Schmidt A; Frick S; Kuhn J; Gershenzon J; Boland W
    Insect Biochem Mol Biol; 2007 Mar; 37(3):255-65. PubMed ID: 17296500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Always being well prepared for defense: the production of deterrents by juvenile Chrysomelina beetles (Chrysomelidae).
    Burse A; Frick S; Discher S; Tolzin-Banasch K; Kirsch R; Strauss A; Kunert M; Boland W
    Phytochemistry; 2009; 70(15-16):1899-909. PubMed ID: 19733867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy.
    Discher S; Burse A; Tolzin-Banasch K; Heinemann SH; Pasteels JM; Boland W
    Chembiochem; 2009 Sep; 10(13):2223-9. PubMed ID: 19623597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beetles do it differently: two stereodivergent cyclisation modes in iridoid-producing leaf-beetle larvae.
    Kunert M; Rahfeld P; Shaker KH; Schneider B; David A; Dettner K; Pasteels JM; Boland W
    Chembiochem; 2013 Feb; 14(3):353-60. PubMed ID: 23341265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of the iridoid glucoside, lamalbid, in Lamium barbatum.
    Li H; Yang SQ; Wang H; Tian J; Gao WY
    Phytochemistry; 2010 Oct; 71(14-15):1690-4. PubMed ID: 20656306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension.
    Aarthy T; Mulani FA; Pandreka A; Kumar A; Nandikol SS; Haldar S; Thulasiram HV
    BMC Plant Biol; 2018 Oct; 18(1):230. PubMed ID: 30314459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glandular β-glucosidases in juvenile Chrysomelina leaf beetles support the evolution of a host-plant-dependent chemical defense.
    Rahfeld P; Haeger W; Kirsch R; Pauls G; Becker T; Schulze E; Wielsch N; Wang D; Groth M; Brandt W; Boland W; Burse A
    Insect Biochem Mol Biol; 2015 Mar; 58():28-38. PubMed ID: 25596091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis.
    Rodríguez-Concepción M; Boronat A
    Curr Opin Plant Biol; 2015 Jun; 25():17-22. PubMed ID: 25909859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of plant resistance to isoprenoid biosynthesis inhibitors.
    Perelló C; Rodríguez-Concepción M; Pulido P
    Methods Mol Biol; 2014; 1153():273-83. PubMed ID: 24777805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways.
    Hampel D; Mosandl A; Wüst M
    Phytochemistry; 2005 Feb; 66(3):305-11. PubMed ID: 15680987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis.
    Rivasseau C; Seemann M; Boisson AM; Streb P; Gout E; Douce R; Rohmer M; Bligny R
    Plant Cell Environ; 2009 Jan; 32(1):82-92. PubMed ID: 19021881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network analysis of the MVA and MEP pathways for isoprenoid synthesis.
    Vranová E; Coman D; Gruissem W
    Annu Rev Plant Biol; 2013; 64():665-700. PubMed ID: 23451776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves.
    Bartram S; Jux A; Gleixner G; Boland W
    Phytochemistry; 2006 Aug; 67(15):1661-72. PubMed ID: 16580034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis.
    Fu N; Yang ZL; Pauchet Y; Paetz C; Brandt W; Boland W; Burse A
    Insect Biochem Mol Biol; 2019 Oct; 113():103212. PubMed ID: 31425853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte.
    Grauvogel C; Petersen J
    Gene; 2007 Jul; 396(1):125-33. PubMed ID: 17433859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites.
    Burlat V; Oudin A; Courtois M; Rideau M; St-Pierre B
    Plant J; 2004 Apr; 38(1):131-41. PubMed ID: 15053766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
    Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK
    Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.