These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15370818)

  • 1. Design and analysis of annular antenna arrays with different reflectors.
    Shi G; Joines WT
    Int J Hyperthermia; 2004 Sep; 20(6):625-36. PubMed ID: 15370818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and measured electric field distributions within an annular phased array: consideration of source antennas.
    Zhang Y; Joines WT; Jirtle RL; Samulski TV
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):780-7. PubMed ID: 8258444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflection and scattering characteristics of reflectors in SAW tags.
    Han T; Wang W; Wu H; Shui Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1387-90. PubMed ID: 18599427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design optimization of interstitial antennas.
    Iskander MF; Tumeh AM
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):238-46. PubMed ID: 2917769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.
    Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and optimization of waveguide multiapplicator hyperthermia systems.
    Boag A; Leviatan Y; Boag A
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):946-52. PubMed ID: 8288286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitive-loaded interstitial antennas for perfect matching and desirable SAR distributions.
    Ahn HR; Lee K
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):284-91. PubMed ID: 16485757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets.
    Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning E-field sensor device for online measurements in annular phased-array systems.
    Wust P; Berger J; Fähling H; Nadobny J; Gellermann J; Tilly W; Rau B; Petermann K; Felix R
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):927-37. PubMed ID: 10098449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An introduction to coil array design for parallel MRI.
    Ohliger MA; Sodickson DK
    NMR Biomed; 2006 May; 19(3):300-15. PubMed ID: 16705631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comments on "Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors".
    Hagmann MJ
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1322-4. PubMed ID: 1487298
    [No Abstract]   [Full Text] [Related]  

  • 15. A patch antenna design for application in a phased-array head and neck hyperthermia applicator.
    Paulides MM; Bakker JF; Chavannes N; Van Rhoon GC
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2057-63. PubMed ID: 18018701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.
    Pisa S; Cavagnaro M; Bernardi P; Lin JC
    IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-angle scannable reflector design using conformal transformation optics.
    Liang L; Hum SV
    Opt Express; 2013 Jan; 21(2):2133-46. PubMed ID: 23389194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The temperature control for cancer thermotherapy using interstitial microwave antenna].
    Xi X; Wang L; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1339-42. PubMed ID: 17228739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design and characterization of an ultrasound phased array suitable for deep tissue hyperthermia.
    Aitkenhead AH; Mills JA; Wilson AJ
    Ultrasound Med Biol; 2008 Nov; 34(11):1793-807. PubMed ID: 18571831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal-eyeball vs. road-sign retroreflectors.
    Greene NR; Filko BJ
    Ophthalmic Physiol Opt; 2010 Jan; 30(1):76-84. PubMed ID: 20444112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.