These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15370853)

  • 1. Influence of forest machine function on operator exposure to whole-body vibration in a cut-to-length timber harvester.
    Sherwin LM; Owende PM; Kanali CL; Lyons J; Ward SM
    Ergonomics; 2004 Sep; 47(11):1145-59. PubMed ID: 15370853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of tyre inflation pressure on whole-body vibrations transmitted to the operator in a cut-to-length timber harvester.
    Sherwin LM; Owende PM; Kanali CL; Lyons J; Ward SM
    Appl Ergon; 2004 May; 35(3):253-61. PubMed ID: 15145288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to whole-body vibration and seat transmissibility in a large sample of earth scrapers.
    Salmoni A; Cann A; Gillin K
    Work; 2010; 35(1):63-75. PubMed ID: 20164626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-body vibration transmitted to the framesaw operator.
    Goglia V; Grbac I
    Appl Ergon; 2005 Jan; 36(1):43-8. PubMed ID: 15627420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.
    Blood RP; Yost MG; Camp JE; Ching RP
    J Occup Environ Hyg; 2015; 12(6):351-62. PubMed ID: 25625530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six-degree-of-freedom whole-body vibration exposure levels during routine skidder operations.
    Jack RJ; Oliver M; Dickey JP; Cation S; Hayward G; Lee-Shee N
    Ergonomics; 2010 May; 53(5):696-715. PubMed ID: 20432089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relations between working conditions and occurrence of vibration disease in forestry workers. I].
    Bernacki K
    Med Pr; 1977; 28(4):283-92. PubMed ID: 593141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic approach to simulating field-based occupational whole-body vibration exposure in the lab using a 6df robot.
    Dickey JP; Eger TR; Oliver ML
    Work; 2010; 35(1):15-26. PubMed ID: 20164622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human response to buffeting in an all-terrain vehicle.
    Fraser TM; Smiley AM; Mottershead BE
    Aviat Space Environ Med; 1976 Jan; 47(1):9-16. PubMed ID: 1247443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration and shock exposure of maintenance-of-way vehicles in the railroad industry.
    Johanning E
    Appl Ergon; 2011 May; 42(4):555-62. PubMed ID: 20870218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of commercially available seat suspensions to reduce whole body vibration exposures in mining heavy equipment vehicle operators.
    Kim JH; Marin LS; Dennerlein JT
    Appl Ergon; 2018 Sep; 71():78-86. PubMed ID: 29764617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Laboratory studies of vibration transmission in motor vehicle seats].
    Gonzales JP; Blüthner R; Bräuer D; Comellas C; Hinz B; Meister A; Menzel G; Mohr D; Richter J; Seidel H
    Z Gesamte Hyg; 1989 Jun; 35(6):348-50. PubMed ID: 2800631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting seats for steel industry mobile machines based on seat effective amplitude transmissibility and comfort.
    Conrad LF; Oliver ML; Jack RJ; Dickey JP; Eger TR
    Work; 2014; 47(1):123-36. PubMed ID: 24125900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictors of whole-body vibration exposure experienced by highway transport truck operators.
    Cann AP; Salmoni AW; Eger TR
    Ergonomics; 2004 Oct; 47(13):1432-53. PubMed ID: 15513718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-body vibration experienced by haulage truck operators in surface mining operations: a comparison of various analysis methods utilized in the prediction of health risks.
    Smets MP; Eger TR; Grenier SG
    Appl Ergon; 2010 Oct; 41(6):763-70. PubMed ID: 20185120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-body vibration exposure and non-neutral neck postures during occupational use of all-terrain vehicles.
    Rehn B; Nilsson T; Olofsson B; Lundström R
    Ann Occup Hyg; 2005 Apr; 49(3):267-75. PubMed ID: 15591073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The apparent mass of the seated human exposed to single-axis and multi-axis whole-body vibration.
    Mansfield NJ; Maeda S
    J Biomech; 2007; 40(11):2543-51. PubMed ID: 17187806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of roll and pitch seat vibration to the head.
    Paddan GS; Griffin MJ
    Ergonomics; 1994 Sep; 37(9):1513-31. PubMed ID: 7957029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ergonomic factors and production target evaluation in eucalyptus timber harvesting operations in mountainous terrains.
    de Souza AP; Minette LJ; Sanches AL; da Silva EP; Rodrigues VA; de Oliveira LA
    Work; 2012; 41 Suppl 1():4957-62. PubMed ID: 22317486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.
    Howard B; Sesek R; Bloswick D
    Work; 2009; 34(3):297-303. PubMed ID: 20037244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.