BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15370972)

  • 1. Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status.
    Ohnishi K; Takahashi A; Yokota S; Ohnishi T
    Int J Radiat Biol; 2004 Aug; 80(8):607-14. PubMed ID: 15370972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p53-dependent thermal enhancement of cellular sensitivity in human squamous cell carcinomas in relation to LET.
    Takahashi A; Ohnishi K; Ota I; Asakawa I; Tamamoto T; Furusawa Y; Matsumoto H; Ohnishi T
    Int J Radiat Biol; 2001 Oct; 77(10):1043-51. PubMed ID: 11682009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of radiation resistance by a heat shock protein inhibitor, KNK437, in human glioblastoma cells.
    Ohnishi K; Yokota S; Takahashi A; Ohnishi T
    Int J Radiat Biol; 2006 Aug; 82(8):569-75. PubMed ID: 16966184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of chronic thermotolerance by KNK437, a benzylidene lactam compound, enhances thermal radiosensitization in mild temperature hyperthermia combined with low dose-rate irradiation.
    Sakurai H; Kitamoto Y; Saitoh J; Nonaka T; Ishikawa H; Kiyohara H; Shioya M; Fukushima M; Akimoto T; Hasegawa M; Nakano T
    Int J Radiat Biol; 2005 Sep; 81(9):711-8. PubMed ID: 16368649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells.
    Voyer J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):253-61. PubMed ID: 18675372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein microarray analysis of apoptosis-related protein expression following heat shock in human tongue squamous cell carcinomas containing different p53 phenotypes.
    Kajihara A; Takahashi A; Ohnishi K; Imai Y; Yamakawa N; Yasumoto J; Ohnishi T; Kirita T
    Int J Hyperthermia; 2008 Dec; 24(8):605-12. PubMed ID: 19065343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo.
    Koishi M; Yokota S; Mae T; Nishimura Y; Kanamori S; Horii N; Shibuya K; Sasai K; Hiraoka M
    Clin Cancer Res; 2001 Jan; 7(1):215-9. PubMed ID: 11205912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of p53 status and wortmannin treatment on potentially lethal damage repair, with emphasis on the response of intratumor quiescent cells.
    Masunaga S; Takahashi A; Ohnishi K; Ohnishi T; Suzuki M; Nagata K; Kinashi Y; Ono K
    Radiat Med; 2003; 21(3):120-7. PubMed ID: 12868860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the localization of heat shock protein 72 correlated with development of thermotolerance in human esophageal cancer cell line.
    Nonaka T; Akimoto T; Mitsuhashi N; Tamaki Y; Yokota S; Nakano T
    Anticancer Res; 2003; 23(6C):4677-87. PubMed ID: 14981913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mild temperature hyperthermia and p53 status on the size of hypoxic fractions in solid tumors, with reference to the effect in intratumor quiescent cell populations.
    Masunaga S; Takahashi A; Ohnishi K; Ohnishi T; Nagata K; Suzuki M; Kinashi Y; Ono K
    Int J Radiat Oncol Biol Phys; 2004 Oct; 60(2):570-7. PubMed ID: 15380594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-induced growth inhibition and apoptosis in transplanted human head and neck squamous cell carcinomas with different status of p53.
    Tamamoto T; Yoshimura H; Takahashi A; Asakawa I; Ota I; Nakagawa H; Ohnishi K; Ohishi H; Ohnishi T
    Int J Hyperthermia; 2003; 19(6):590-7. PubMed ID: 14756450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P53-independent thermosensitization by mitomycin C in human non-small-cell lung cancer cells.
    Jin ZH; Matsumoto H; Hayashi S; Hatashita M; Ohtsubo T; Shioura H; Kitai R; Kano E
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):852-60. PubMed ID: 15183489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol restores p53-dependent radiosensitivity of human head and neck cancer cells bearing mutant p53.
    Ohnishi K; Ota I; Takahashi A; Ohnishi T
    Br J Cancer; 2000 Dec; 83(12):1735-9. PubMed ID: 11104574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KNK437, a benzylidene lactam compound, sensitises prostate cancer cells to the apoptotic effect of hyperthermia.
    Sahin E; Sahin M; Sanlioğlu AD; Gümüslü S
    Int J Hyperthermia; 2011; 27(1):63-73. PubMed ID: 21204621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of the antivascular agent ZD6126 with hypoxic cytotoxin treatment, with reference to the effect on quiescent tumor cells and the dependency on p53 status of tumor cells.
    Masunaga S; Nagasawa H; Uto Y; Hori H; Ohnishi K; Takahashi A; Ohnishi T; Suzuki M; Nagata K; Kinashi Y; Ono K
    Oncol Rep; 2005 Aug; 14(2):393-400. PubMed ID: 16012721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-induced growth inhibition in transplanted human tongue carcinomas with different p53 gene status.
    Asakawa I; Yoshimura H; Takahashi A; Ohnishi K; Nakagawa H; Ota I; Furusawa Y; Tamamoto T; Ohishi H; Ohnishi T
    Anticancer Res; 2002; 22(4):2037-43. PubMed ID: 12174881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-terminal peptides of p53 molecules enhance radiation-induced apoptosis in human mutant p53 cancer cells.
    Ohnishi K; Inaba H; Yasumoto J; Yuki K; Takahashi A; Ohnishi T
    Apoptosis; 2004 Sep; 9(5):591-7. PubMed ID: 15314287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide is an initiator of intercellular signal transduction for stress response after hyperthermia in mutant p53 cells of human glioblastoma.
    Matsumoto H; Hayashi S; Hatashita M; Ohnishi K; Ohtsubo T; Kitai R; Shioura H; Ohnishi T; Kano E
    Cancer Res; 1999 Jul; 59(13):3239-44. PubMed ID: 10397271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells.
    Yokota S; Kitahara M; Nagata K
    Cancer Res; 2000 Jun; 60(11):2942-8. PubMed ID: 10850441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.