BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1537169)

  • 1. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1992 Mar; (276):291-8. PubMed ID: 1537169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    J Orthop Res; 1991 Jul; 9(4):465-76. PubMed ID: 2045973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo osteochondrogenic potential of cultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1990 Oct; (259):223-32. PubMed ID: 2208860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ectopic bone formation by composite graft of culture-expanded human marrow cells and porous calcium phosphate ceramic].
    Goshima J
    Nihon Seikeigeka Gakkai Zasshi; 1991 Jan; 65(1):34-43. PubMed ID: 2040823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks.
    Goshima J; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1991 Jan; (262):298-311. PubMed ID: 1984928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells.
    Goshima J; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1991 Aug; (269):274-83. PubMed ID: 1650657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ectopic bone formation by composite graft of culture-expanded rat marrow cells and porous calcium phosphate ceramicmic].
    Goshima J
    Nihon Seikeigeka Gakkai Zasshi; 1991 Jan; 65(1):26-33. PubMed ID: 2040822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
    Solchaga LA; Dennis JE; Goldberg VM; Caplan AI
    J Orthop Res; 1999 Mar; 17(2):205-13. PubMed ID: 10221837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Haynesworth SE; Holecek JJ; Baber MA; Goldberg VM; Caplan AI
    Bone; 1990; 11(3):181-8. PubMed ID: 2390376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human marrow cells-derived cultured bone in porous ceramics.
    Yoshikawa T; Ohgushi H; Uemura T; Nakajima H; Ichijima K; Tamai S; Tateisi T
    Biomed Mater Eng; 1998; 8(5-6):311-20. PubMed ID: 10081594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterotopic osteogenesis in porous ceramics induced by marrow cells.
    Ohgushi H; Goldberg VM; Caplan AI
    J Orthop Res; 1989; 7(4):568-78. PubMed ID: 2544711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells.
    van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G
    Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth into three different porous ceramics implanted into the tibia of rats and rabbits.
    Uchida A; Nade S; McCartney E; Ching W
    J Orthop Res; 1985; 3(1):65-77. PubMed ID: 2984392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo osteogenic properties of the composite of periosteal-derived osteoblast and collagen- coated true bone ceramics.
    Gu WW; Xu YH; Cao HQ; Zhang BD; Lu KB
    Di Yi Jun Yi Da Xue Xue Bao; 2002 Jun; 22(6):518-20. PubMed ID: 12297473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative assessment of osteoinductivity of human demineralized bone matrix.
    Zhang M; Powers RM; Wolfinbarger L
    J Periodontol; 1997 Nov; 68(11):1076-84. PubMed ID: 9407400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.