BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15371698)

  • 1. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2004 Sep; 29(18):1980-9. PubMed ID: 15371698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis.
    Braun JT; Hines JL; Akyuz E; Vallera C; Ogilvie JW
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1776-82. PubMed ID: 16845350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model.
    Braun JT; Hoffman M; Akyuz E; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 May; 31(12):1314-20. PubMed ID: 16721292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple.
    Braun JT; Akyuz E; Udall H; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Feb; 31(3):262-8. PubMed ID: 16449897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Jun; 31(13):1410-4. PubMed ID: 16741447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis.
    Braun JT; Akyuz E; Ogilvie JW; Bachus KN
    J Bone Joint Surg Am; 2005 Sep; 87(9):2038-51. PubMed ID: 16140820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of staple on growth rate of vertebral growth plates in goat scoliosis].
    Song D; Meng C; Zheng G; Zhang W; Zhang R; Bai L; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jan; 23(1):72-5. PubMed ID: 19192884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical assessment of thoracic spine stapling.
    Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E
    Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN; Stefko RM
    Spine (Phila Pa 1976); 2003 Oct; 28(19):2198-203. PubMed ID: 14520031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc: analysis in an immature goat model.
    Hunt KJ; Braun JT; Christensen BA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):371-7. PubMed ID: 20110838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An experimental study of correction of idiopathic-type scoliosis by staple].
    Zheng GQ; Zhang YG; Wang Y; Zhang XS; Zhang RY; Zhang W
    Zhonghua Wai Ke Za Zhi; 2009 Jan; 47(2):136-8. PubMed ID: 19563011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical aspects of spinal growth modulation in scoliosis correction.
    Jain V; Lykissas M; Trobisch P; Wall EJ; Newton PO; Sturm PF; Cahill PJ; Bylski-Austrow DI
    Instr Course Lect; 2014; 63():335-44. PubMed ID: 24720319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of curve progression in a goat scoliosis model.
    Braun JT; Akyuz E
    J Spinal Disord Tech; 2005 Jun; 18(3):272-6. PubMed ID: 15905773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anterior correction of thoracic scoliosis with Kaneda anterior spinal system. A preliminary report.
    Kaneda K; Shono Y; Satoh S; Abumi K
    Spine (Phila Pa 1976); 1997 Jun; 22(12):1358-68. PubMed ID: 9201840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A porcine early-onset scoliosis model created using a posterior mini-invasive method: a pilot study.
    Zheng X; Sun X; Qiu Y; Zhu ZZ; Bin W; Ding YT; Qian BP
    J Spinal Disord Tech; 2014 Dec; 27(8):E294-300. PubMed ID: 25374380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth.
    Wall EJ; Bylski-Austrow DI; Kolata RJ; Crawford AH
    Spine (Phila Pa 1976); 2005 May; 30(10):1148-53. PubMed ID: 15897828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomechanical investigation of vertebral staples for fusionless scoliosis correction.
    Shillington MP; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):445-51. PubMed ID: 21316129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convex hemiepiphysiodesis: the limits of vertebral stapling.
    O'leary PT; Sturm PF; Hammerberg KW; Lubicky JP; Mardjetko SM
    Spine (Phila Pa 1976); 2011 Sep; 36(19):1579-83. PubMed ID: 21681138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental study on controlling unilateral spine growth by shape memory alloy staple].
    Zhang YG; Zhang W; Zheng GQ; Zhang RY; Zhang HZ; Wang Y
    Zhonghua Wai Ke Za Zhi; 2007 Apr; 45(8):537-9. PubMed ID: 17686325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scoliosis model created by pedicle screw tethering in immature goats: the feasibility, reliability, and complications.
    Zhang YG; Zheng GQ; Zhang XS; Wang Y
    Spine (Phila Pa 1976); 2009 Oct; 34(21):2305-10. PubMed ID: 19934810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.