These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 15373357)
1. Study on the effect of iron on PM10 formation and design of a particle-generating system using a cocentric diffusion burner flame. Yang G J Air Waste Manag Assoc; 2004 Aug; 54(8):898-907. PubMed ID: 15373357 [TBL] [Abstract][Full Text] [Related]
2. Role of metal additives in light scattering from flame particulates. Charalampopoulos TT; Hahn DW; Chang H Appl Opt; 1992 Oct; 31(30):6519-28. PubMed ID: 20733870 [TBL] [Abstract][Full Text] [Related]
3. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation. Paur HR; Baumann W; Mätzing H; Seifert H Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452 [TBL] [Abstract][Full Text] [Related]
4. Digital camera measurements of soot temperature and soot volume fraction in axisymmetric flames. Guo H; Castillo JA; Sunderland PB Appl Opt; 2013 Nov; 52(33):8040-7. PubMed ID: 24513755 [TBL] [Abstract][Full Text] [Related]
5. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator. Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989 [TBL] [Abstract][Full Text] [Related]
6. On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl. Poliak M; Fomin A; Tsionsky V; Cheskis S; Wlokas I; Rahinov I Phys Chem Chem Phys; 2015 Jan; 17(1):680-5. PubMed ID: 25407507 [TBL] [Abstract][Full Text] [Related]
7. Measurement of Soot Concentration in Burner Diffusion Flames through Emission Spectroscopy with Particle Swarm Optimization. Li Z; Wan N; Qian X Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400449 [TBL] [Abstract][Full Text] [Related]
8. A small porous-plug burner for studies of combustion chemistry and soot formation. Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223 [TBL] [Abstract][Full Text] [Related]
9. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine. Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720 [TBL] [Abstract][Full Text] [Related]
10. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame. Xie X; Zheng S; Sui R; Luo Z; Liu S; Consalvi JL ACS Omega; 2021 Apr; 6(15):10371-10382. PubMed ID: 34056190 [TBL] [Abstract][Full Text] [Related]
11. Design and characterization of a linear Hencken-type burner. Campbell MF; Bohlin GA; Schrader PE; Bambha RP; Kliewer CJ; Johansson KO; Michelsen HA Rev Sci Instrum; 2016 Nov; 87(11):115114. PubMed ID: 27910522 [TBL] [Abstract][Full Text] [Related]
12. Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames. Grotheer HH; Pokorny H; Barth KL; Thierley M; Aigner M Chemosphere; 2004 Dec; 57(10):1335-42. PubMed ID: 15519378 [TBL] [Abstract][Full Text] [Related]
13. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration. Wang J; Richter H; Howard JB; Levendis YA; Carlson J Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400 [TBL] [Abstract][Full Text] [Related]
14. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
16. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames. Gleason K; Gomez A J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816 [TBL] [Abstract][Full Text] [Related]
17. Diffusion flame-derived fine particulate matters doped with iron caused genotoxicity in B6C3F1 mice. Park JH; Han KT; Eu KJ; Kim JS; Chung KH; Park B; Yang GS; Lee KH; Cho MH Toxicol Ind Health; 2005 May; 21(3-4):57-65. PubMed ID: 15986577 [TBL] [Abstract][Full Text] [Related]
18. Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry. Ferge T; Karg E; Schröppel A; Coffee KR; Tobias HJ; Frank M; Gard EE; Zimmermann R Environ Sci Technol; 2006 May; 40(10):3327-35. PubMed ID: 16749701 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Ni T; Pinson JA; Gupta S; Santoro RJ Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570 [TBL] [Abstract][Full Text] [Related]
20. Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Zhou YM; Zhong CY; Kennedy IM; Leppert VJ; Pinkerton KE Toxicol Appl Pharmacol; 2003 Jul; 190(2):157-69. PubMed ID: 12878045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]