These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15373357)

  • 21. Flame experiments at the advanced light source: new insights into soot formation processes.
    Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere.
    Ying Y; Liu D
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soot Morphology and Nanostructure Differences between Chinese Aviation Kerosene and Algae-Based Aviation Biofuel in Free Jet Laminar Diffusion Flames.
    Chang D; Li J; Yang Y; Gan Z
    ACS Omega; 2022 Apr; 7(14):11560-11569. PubMed ID: 35449979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small-angle X-ray studies of soot inception and growth.
    Hessler JP; Seifert S; Winans RE; Fletcher TH
    Faraday Discuss; 2001; (119):395-407; discussion 445-59. PubMed ID: 11878003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames.
    Leschowski M; Dreier T; Schulz C
    Rev Sci Instrum; 2014 Apr; 85(4):045103. PubMed ID: 24784655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soot Morphology and Nanostructure in Complex Flame Flow Patterns via Secondary Particle Surface Growth.
    Davis J; Tiwari K; Novosselov I
    Fuel (Lond); 2019 Jun; 245():447-457. PubMed ID: 31736504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-dimensional imaging of soot volume fraction in laminar diffusion flames.
    Snelling DR; Thomson KA; Smallwood GJ; Gülder OL
    Appl Opt; 1999 Apr; 38(12):2478-85. PubMed ID: 18319815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative injury in the lungs of neonatal rats following short-term exposure to ultrafine iron and soot particles.
    Zhong CY; Zhou YM; Smith KR; Kennedy IM; Chen CY; Aust AE; Pinkerton KE
    J Toxicol Environ Health A; 2010; 73(12):837-47. PubMed ID: 20391124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical study of gas-phase interactions of phosphorus compounds with co-flow diffusion flames.
    Takahashi F; Katta VR; Linteris GT; Babushok VI
    Proc Combust Inst; 2019; 37():. PubMed ID: 31579396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces.
    Cain JP; Gassman PL; Wang H; Laskin A
    Phys Chem Chem Phys; 2010; 12(20):5206-18. PubMed ID: 21491682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.
    Kim SH; Fletcher RA; Zachariah MR
    Environ Sci Technol; 2005 Jun; 39(11):4021-6. PubMed ID: 15984778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and Numerical Investigation of Flow Field and Soot Particle Size Distribution of Methane-Containing Gas Mixtures in a Swirling Burner.
    Musavi Z; Zhang Y; Robert E; Engvall K
    ACS Omega; 2022 Jan; 7(1):469-479. PubMed ID: 35036716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling aerosol formation in opposed-flow diffusion flames.
    Violi A; D'Anna A; D'Alessio A; Sarofim AF
    Chemosphere; 2003 Jun; 51(10):1047-54. PubMed ID: 12718969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources.
    Chang MC; Chow JC; Watson JG; Hopke PK; Yi SM; England GC
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1494-505. PubMed ID: 15648387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies.
    Adeosun A; Huang Q; Li T; Gopan A; Wang X; Li S; Axelbaum RL
    Rev Sci Instrum; 2018 Feb; 89(2):025109. PubMed ID: 29495807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on Soot and NOx Formation Characteristics in Ammonia/Ethylene Laminar Co-Flow Diffusion Flame.
    Li S; Liu Q; Zhang F; Sun J; Wang Y; Gu M
    Molecules; 2024 Aug; 29(17):. PubMed ID: 39274850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.