These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15373366)

  • 1. Geotechnical engineering properties of incinerator ash mixes.
    Muhunthan B; Taha R; Said J
    J Air Waste Manag Assoc; 2004 Aug; 54(8):985-91. PubMed ID: 15373366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material.
    Singh SP; Tripathy DP; Ranjith PG
    Waste Manag; 2008; 28(8):1331-7. PubMed ID: 18060762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory compaction of fly ash and fly ash with cement additions.
    Zabielska-Adamska K
    J Hazard Mater; 2008 Mar; 151(2-3):481-9. PubMed ID: 17619083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material.
    Razak HA; Naganathan S; Hamid SN
    J Hazard Mater; 2009 Dec; 172(2-3):862-7. PubMed ID: 19665294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride extraction for quality improvement of municipal solid waste incinerator ash for the concrete industry.
    Boghetich G; Liberti L; Notarnicola M; Palma M; Petruzzelli D
    Waste Manag Res; 2005 Feb; 23(1):57-61. PubMed ID: 15751396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of municipal solid waste incinerator fly ash utilisation.
    Hartmann S; Koval L; Škrobánková H; Matýsek D; Winter F; Purgar A
    Waste Manag Res; 2015 Aug; 33(8):740-7. PubMed ID: 26060198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials.
    Lin CF; Wu CH; Ho HM
    Waste Manag; 2006; 26(9):970-8. PubMed ID: 16293405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash.
    Lin KL; Wang KS; Tzeng BY; Lin CY
    Waste Manag Res; 2003 Dec; 21(6):567-74. PubMed ID: 14986718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator.
    Yasuhara A; Katami T
    Waste Manag; 2007; 27(3):439-47. PubMed ID: 16624542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing performance and durability of slag made from incinerator bottom ash and fly ash.
    Chiou IJ; Wang KS; Tsai CC
    Waste Manag; 2009 Feb; 29(2):501-5. PubMed ID: 18544471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator.
    Lin YS; Chen KS; Lin YC; Hung CH; Chang-Chien GP
    J Hazard Mater; 2008 Jun; 154(1-3):954-62. PubMed ID: 18068298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].
    Wang L; Jin J; Li XD; Chi Y; Yan JH
    Huan Jing Ke Xue; 2010 Aug; 31(8):1973-80. PubMed ID: 21090322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigations for assessing the influence of fly ash on the flow through porous media in Darcy regime.
    Chandel A; Shankar V; Alam MA
    Water Sci Technol; 2021 Mar; 83(5):1028-1038. PubMed ID: 33724934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.
    Naganathan S; Razak HA; Hamid SN
    Waste Manag Res; 2010 Sep; 28(9):848-60. PubMed ID: 20852000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material.
    Lin CL; Weng MC; Chang CH
    J Environ Manage; 2012 Dec; 113():377-82. PubMed ID: 23084273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behavior of municipal solid waste incinerator bottom ash: Results from triaxial tests.
    Le NH; Abriak NE; Binetruy C; Benzerzour M; Nguyen ST
    Waste Manag; 2017 Jul; 65():37-46. PubMed ID: 28392120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in deformation properties of processed MSWI bottom ash: results from triaxial tests.
    Arm M
    Waste Manag; 2004; 24(10):1035-42. PubMed ID: 15567668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbable organic halogens (AOXs) in solid residues from hazardous and clinical waste incineration.
    Durmusoglu E; Bakoglu M; Karademir A; Kirli L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1699-714. PubMed ID: 16835121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blending organic material with municipal solid waste incinerator bottom ash to promote in-situ carbonation in road base.
    Asal S; Laux SJ; McVay MC; Townsend TG
    Waste Manag Res; 2019 Sep; 37(9):951-955. PubMed ID: 31378160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.