BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15373409)

  • 1. Formation mechanism of p-methylacetophenone from citral via a tert-alkoxy radical intermediate.
    Ueno T; Masuda H; Ho CT
    J Agric Food Chem; 2004 Sep; 52(18):5677-84. PubMed ID: 15373409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent inhibitory effects of black tea theaflavins on off-odor formation from citral.
    Ueno T; Kiyohara S; Ho CT; Masuda H
    J Agric Food Chem; 2006 Apr; 54(8):3055-61. PubMed ID: 16608230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant activity of plant extracts on the inhibition of citral off-odor formation.
    Liang CP; Wang M; Simon JE; Ho CT
    Mol Nutr Food Res; 2004 Sep; 48(4):308-17. PubMed ID: 15497182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system.
    Tian H; Li D; Xu T; Hu J; Rong Y; Zhao B
    J Sci Food Agric; 2017 Jul; 97(9):2991-2998. PubMed ID: 27859362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants.
    Yang X; Tian H; Ho CT; Huang Q
    J Agric Food Chem; 2011 Jun; 59(11):6113-9. PubMed ID: 21517071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (O/W) nanoemulsions.
    Zhao Q; Ho CT; Huang Q
    J Agric Food Chem; 2013 Aug; 61(31):7462-9. PubMed ID: 23855652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the hydrophilic head size and hydrophobic tail length of surfactants on the ability of micelles to stabilize citral.
    Hong CR; Park SJ; Choi SJ
    J Sci Food Agric; 2016 Jul; 96(9):3227-32. PubMed ID: 26493760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citral Photodegradation in Solution: Highlighting of a Radical Pathway in Parallel to Cyclization Pathway.
    Ay E; Gérard V; Graff B; Morlet-Savary F; Mutilangi W; Galopin C; Lalevée J
    J Agric Food Chem; 2019 Apr; 67(13):3752-3760. PubMed ID: 30852891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin.
    Choi SJ; Decker EA; Henson L; Popplewell LM; McClements DJ
    J Agric Food Chem; 2009 Dec; 57(23):11349-53. PubMed ID: 19891478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citral degradation in micellar structures formed with polyoxyethylene-type surfactants.
    Park SJ; Hong CR; Choi SJ
    Food Chem; 2015 Mar; 170():443-7. PubMed ID: 25306369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.
    Djordjevic D; Cercaci L; Alamed J; McClements DJ; Decker EA
    J Agric Food Chem; 2007 May; 55(9):3585-91. PubMed ID: 17419641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting self-assembled soft systems based on surfactants, biopolymers and their mixtures for inhibition of Citral degradation under harsh acidic Conditions.
    Bhat PA; Nazir N; Chat OA; Dar AA
    Food Chem; 2021 Mar; 340():128168. PubMed ID: 33011467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new insight into Fenton and Fenton-like processes for water treatment.
    Jiang C; Pang S; Ouyang F; Ma J; Jiang J
    J Hazard Mater; 2010 Feb; 174(1-3):813-7. PubMed ID: 19853996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insight into solvent effects on the formal HOO. + HOO. reaction.
    Foti MC; Sortino S; Ingold KU
    Chemistry; 2005 Mar; 11(6):1942-8. PubMed ID: 15685709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent.
    Xu XR; Zhao ZY; Li XY; Gu JD
    Chemosphere; 2004 Apr; 55(1):73-9. PubMed ID: 14720549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of citral degradation in an acidic aqueous environment by polyoxyethylene alkylether surfactants.
    Maswal M; Dar AA
    Food Chem; 2013 Jun; 138(4):2356-64. PubMed ID: 23497896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction.
    Chueca B; Pagán R; García-Gonzalo D
    Int J Food Microbiol; 2014 Oct; 189():126-31. PubMed ID: 25146464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acaricidal toxicity of 2'-hydroxy-4'-methylacetophenone isolated from Angelicae koreana roots and structure-activity relationships of its derivatives.
    Oh MS; Yang JY; Lee HS
    J Agric Food Chem; 2012 Apr; 60(14):3606-11. PubMed ID: 22429095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective Reduction of Citral Isomers in NCR Ene Reductase: Analysis of an Active-Site Mutant Library.
    Kress N; Rapp J; Hauer B
    Chembiochem; 2017 Apr; 18(8):717-720. PubMed ID: 28176464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.