BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15373410)

  • 1. Detailed investigation of the production of the bread flavor component 6-acetyl-1,2,3,4-tetrahydropyridine in proline/1,3-dihydroxyacetone model systems.
    Adams A; Tehrani KA; Kersiene M; De Kimpe N
    J Agric Food Chem; 2004 Sep; 52(18):5685-93. PubMed ID: 15373410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal.
    Adams A; Polizzi V; van Boekel M; De Kimpe N
    J Agric Food Chem; 2008 Mar; 56(6):2147-53. PubMed ID: 18318495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: extraordinary Maillard flavor compounds.
    Adams A; De Kimpe N
    Chem Rev; 2006 Jun; 106(6):2299-319. PubMed ID: 16771451
    [No Abstract]   [Full Text] [Related]  

  • 4. Formation of odorants in Maillard model systems based on l-proline as affected by pH.
    Blank I; Devaud S; Matthey-Doret W; Robert F
    J Agric Food Chem; 2003 Jun; 51(12):3643-50. PubMed ID: 12769539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive carbonyl species as key control point for optimization of reaction flavors.
    Paravisini L; Peterson DG
    Food Chem; 2019 Feb; 274():71-78. PubMed ID: 30372998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New short and general synthesis of three key Maillard flavour compounds: 2-Acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine and 5-acetyl-2,3-dihydro-4H-1,4-thiazine.
    Deblander J; Van Aeken S; Adams A; De Kimpe N; Abbaspour Tehrani K
    Food Chem; 2015 Feb; 168():327-31. PubMed ID: 25172717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-oxo-2,3-dihydro-1H-indolizinium-6-olates.
    Frank O; Jezussek M; Hofmann T
    J Agric Food Chem; 2003 Apr; 51(9):2693-9. PubMed ID: 12696959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant properties of malt model systems.
    Samaras TS; Gordon MH; Ames JM
    J Agric Food Chem; 2005 Jun; 53(12):4938-45. PubMed ID: 15941339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of bitter compounds in whole wheat bread.
    Jiang D; Peterson DG
    Food Chem; 2013 Nov; 141(2):1345-53. PubMed ID: 23790923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol, an underestimated flavor precursor in the Maillard reaction.
    Smarrito-Menozzi C; Matthey-Doret W; Devaud-Goumoens S; Viton F
    J Agric Food Chem; 2013 Oct; 61(43):10225-30. PubMed ID: 23373461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking.
    Davidek T; Festring D; Dufossé T; Novotny O; Blank I
    J Agric Food Chem; 2013 Oct; 61(43):10215-9. PubMed ID: 23621440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative model studies on the efficiency of precursors in the formation of cooling-active 1-pyrrolidinyl-2-cyclopenten-1-ones and bitter-tasting cyclopenta-[b]azepin-8(1H)-ones.
    Ottinger H; Hofmann T
    J Agric Food Chem; 2002 Aug; 50(18):5156-61. PubMed ID: 12188623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An expeditious, high-yielding construction of the food aroma compounds 6-acetyl-1,2,3,4-tetrahydropyridine and 2-acetyl-1-pyrroline.
    Harrison TJ; Dake GR
    J Org Chem; 2005 Dec; 70(26):10872-4. PubMed ID: 16356012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structure and conformational composition of 1,3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1,3-dihydroxyacetone.
    Dorofeeva OV; Vogt N; Vogt J; Popik MV; Rykov AN; Vilkov LV
    J Phys Chem A; 2007 Jul; 111(28):6434-42. PubMed ID: 17595068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihydroxyacetone in amino acid catalyzed Mannich-type reactions.
    Westermann B; Neuhaus C
    Angew Chem Int Ed Engl; 2005 Jun; 44(26):4077-9. PubMed ID: 15912549
    [No Abstract]   [Full Text] [Related]  

  • 16. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; FlorĂȘncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Deamidation on the Formation of Pyrazines and Proline-Specific Compounds in Maillard Reaction of Asparagine and Proline with Glucose.
    Xiao Q; Huang Q; Ho CT
    J Agric Food Chem; 2023 May; 71(18):7090-7098. PubMed ID: 37126799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of peptide-bound Heyns compounds.
    Krause R; Schlegel K; Schwarzer E; Henle T
    J Agric Food Chem; 2008 Apr; 56(7):2522-7. PubMed ID: 18318498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio conformational study of N-acetyl-L-proline-N',N'-dimethylamide: a model for polyproline.
    Kee Kang Y; Sook Park H
    Biophys Chem; 2005 Jan; 113(1):93-101. PubMed ID: 15617814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free glutamine as a major precursor of brown products and fluorophores in Maillard reaction systems.
    Niquet C; Tessier FJ
    Amino Acids; 2007 Jul; 33(1):165-71. PubMed ID: 17006601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.