These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15373413)

  • 1. Enzymatic high digestion of soybean milk residue (okara).
    Kasai N; Murata A; Inui H; Sakamoto T; Kahn RI
    J Agric Food Chem; 2004 Sep; 52(18):5709-16. PubMed ID: 15373413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and enzymatic digestion of body complex of soybean seed.
    Kasai N; Satake R; Ikehara H
    J Agric Food Chem; 2005 Dec; 53(26):10026-33. PubMed ID: 16366690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharification of Okara fiber by plant dietary fiber hydrolases.
    Matsuo M
    J Nutr Sci Vitaminol (Tokyo); 2004 Aug; 50(4):291-4. PubMed ID: 15527073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of okara, a byproduct from soymilk production, through the development of soy-based snack food.
    Katayama M; Wilson LA
    J Food Sci; 2008 Apr; 73(3):S152-7. PubMed ID: 18387128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of soybean oil from single cells.
    Kasai N; Imashiro Y; Morita N
    J Agric Food Chem; 2003 Oct; 51(21):6217-22. PubMed ID: 14518947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition of proteins in okara as a byproduct in hydrothermal processing of soy milk.
    Stanojevic SP; Barac MB; Pesic MB; Vucelic-Radovic BV
    J Agric Food Chem; 2012 Sep; 60(36):9221-8. PubMed ID: 22906059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-assisted aqueous extraction of oleosomes from soybeans (Glycine max).
    Kapchie VN; Wei D; Hauck C; Murphy PA
    J Agric Food Chem; 2008 Mar; 56(5):1766-71. PubMed ID: 18251501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica.
    Vong WC; Au Yang KL; Liu SQ
    Int J Food Microbiol; 2016 Oct; 235():1-9. PubMed ID: 27391864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient digestion and structural characteristics of cell walls of coffee beans.
    Kasai N; Konishi A; Iwai K; Maeda G
    J Agric Food Chem; 2006 Aug; 54(17):6336-42. PubMed ID: 16910728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of the plant cell wall.
    Cosgrove DJ
    Nat Rev Mol Cell Biol; 2005 Nov; 6(11):850-61. PubMed ID: 16261190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-ionic liquid pretreatment and ultrasound-promoted enzymatic hydrolysis of black soybean okara.
    Yu CA; Yang CY
    J Biosci Bioeng; 2019 Jun; 127(6):767-773. PubMed ID: 30638804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineral elements, lipoxygenase activity, and antioxidant capacity of okara as a byproduct in hydrothermal processing of soy milk.
    Stanojevic SP; Barac MB; Pesic MB; Zilic SM; Kresovic MM; Vucelic-Radovic BV
    J Agric Food Chem; 2014 Sep; 62(36):9017-23. PubMed ID: 25167333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation with cellulase, hemicellulase and Yarrowia lipolytica boosts health benefits of okara.
    Vong WC; Lim XY; Liu SQ
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7129-7140. PubMed ID: 28801839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of components extracted from okara on the physicochemical properties of soymilk and tofu texture.
    Toda K; Chiba K; Ono T
    J Food Sci; 2007 Mar; 72(2):C108-13. PubMed ID: 17995824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and use of okara, the soybean residue from soy milk production--a review.
    O'Toole DK
    J Agric Food Chem; 1999 Feb; 47(2):363-71. PubMed ID: 10563901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soybean (Glycine max) cell wall composition and availability to feed enzymes.
    Ouhida I; PĂ©rez JF; Gasa J
    J Agric Food Chem; 2002 Mar; 50(7):1933-8. PubMed ID: 11902936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined enzymatic and high-pressure processing affect cell wall polysaccharides in berries.
    Hilz H; Lille M; Poutanen K; Schols HA; Voragen AG
    J Agric Food Chem; 2006 Feb; 54(4):1322-8. PubMed ID: 16478255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive proteins and energy value of okara as a byproduct in hydrothermal processing of soy milk.
    Stanojevic SP; Barac MB; Pesic MB; Jankovic VS; Vucelic-Radovic BV
    J Agric Food Chem; 2013 Sep; 61(38):9210-9. PubMed ID: 23978042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of an extracellular system of enzymes during growth of Geotrichum candidum 3C on cell walls isolated from cereal grain capsules].
    Rodionova NA; Dubovaia NV; Martinovich LI; Bezborodov AM
    Prikl Biokhim Mikrobiol; 2001; 37(5):562-5. PubMed ID: 11605468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soybean beta-conglycinin as the main allergen in a patient with food-dependent exercise-induced anaphylaxis by tofu: food processing alters pepsin resistance.
    Adachi A; Horikawa T; Shimizu H; Sarayama Y; Ogawa T; Sjolander S; Tanaka A; Moriyama T
    Clin Exp Allergy; 2009 Jan; 39(1):167-73. PubMed ID: 19128355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.