These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 15373424)

  • 1. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy.
    Cherney DP; Bridges TE; Harris JM
    Anal Chem; 2004 Sep; 76(17):4920-8. PubMed ID: 15373424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-controlled confocal Raman microscopy to detect phase transitions in phospholipid vesicles.
    Fox CB; Myers GA; Harris JM
    Appl Spectrosc; 2007 May; 61(5):465-9. PubMed ID: 17555614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles.
    Cherney DP; Conboy JC; Harris JM
    Anal Chem; 2003 Dec; 75(23):6621-8. PubMed ID: 14640737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy.
    Fox CB; Horton RA; Harris JM
    Anal Chem; 2006 Jul; 78(14):4918-24. PubMed ID: 16841911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal Raman microscopy probing of temperature-controlled release from individual, optically-trapped phospholipid vesicles.
    Schaefer JJ; Ma C; Harris JM
    Anal Chem; 2012 Nov; 84(21):9505-12. PubMed ID: 23043532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide.
    Yokoyama S; Inagaki A; Imura T; Ohkubo T; Tsubaki N; Sakai H; Abe M
    Colloids Surf B Biointerfaces; 2005 Sep; 44(4):204-10. PubMed ID: 16087320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of membrane rigidity on trapped unilamellar phospholipid vesicles by using differential confocal microscopy.
    Liu TH; Xiao JL; Lee CH; Lin JY
    Appl Opt; 2011 Jul; 50(19):3311-5. PubMed ID: 21743534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confocal Raman microscopy of pH-gradient-based 10 000-fold preconcentration of compounds within individual, optically trapped phospholipid vesicles.
    Myers GA; Harris JM
    Anal Chem; 2011 Aug; 83(15):6098-105. PubMed ID: 21740010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles.
    Komatsu T; Moritake M; Tsuchida E
    Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers.
    Mechler A; Praporski S; Piantavigna S; Heaton SM; Hall KN; Aguilar MI; Martin LL
    Biomaterials; 2009 Feb; 30(4):682-9. PubMed ID: 19000635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles.
    Marrink SJ; Mark AE
    J Am Chem Soc; 2003 Dec; 125(49):15233-42. PubMed ID: 14653758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles.
    Wacklin HP; Thomas RK
    Langmuir; 2007 Jul; 23(14):7644-51. PubMed ID: 17539662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities.
    Park SH; Oh SG; Mun JY; Han SS
    Colloids Surf B Biointerfaces; 2006 Mar; 48(2):112-8. PubMed ID: 16520025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved analysis of small particles by confocal Raman microscopy: depth profiling and optical trapping.
    Bridges TE; Houlne MP; Harris JM
    Anal Chem; 2004 Feb; 76(3):576-84. PubMed ID: 14750849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles.
    Wu H; Zheng L; Lentz BR
    Biochemistry; 1996 Sep; 35(38):12602-11. PubMed ID: 8823198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution.
    Fox CB; Uibel RH; Harris JM
    J Phys Chem B; 2007 Oct; 111(39):11428-36. PubMed ID: 17850068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicles with a double bilayer.
    Zawada ZH
    Cell Mol Biol Lett; 2004; 9(4A):589-602. PubMed ID: 15647783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the structural transition of cationic DPPC liposomes from the approach of TEM, SAXS and AFM measurements.
    Sakai K; Tomizawa H; Tsuchiya K; Ishida N; Sakai H; Abe M
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):73-8. PubMed ID: 18786817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of forces between a colloidal particle and a phospholipid bilayer.
    Sharp JM; Duran RS; Dickinson RB
    J Colloid Interface Sci; 2006 Jul; 299(1):182-90. PubMed ID: 16500670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection.
    Sun B; Chiu DT
    Anal Chem; 2005 May; 77(9):2770-6. PubMed ID: 15859592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.