BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 15373474)

  • 1. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer.
    Litwinienko G; Ingold KU
    J Org Chem; 2004 Sep; 69(18):5888-96. PubMed ID: 15373474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution.
    Shang YJ; Qian YP; Liu XD; Dai F; Shang XL; Jia WQ; Liu Q; Fang JG; Zhou B
    J Org Chem; 2009 Jul; 74(14):5025-31. PubMed ID: 19472994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of curcumin oxidation by 2,2-diphenyl-1-picrylhydrazyl (DPPH˙): an interesting case of separated coupled proton-electron transfer.
    Foti MC; Slavova-Kazakova A; Rocco C; Kancheva VD
    Org Biomol Chem; 2016 Sep; 14(35):8331-7. PubMed ID: 27530442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer.
    Musialik M; Litwinienko G
    Org Lett; 2005 Oct; 7(22):4951-4. PubMed ID: 16235930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids.
    Musialik M; Kuzmicz R; Pawłowski TS; Litwinienko G
    J Org Chem; 2009 Apr; 74(7):2699-709. PubMed ID: 19275193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic and enolic hydroxyl groups in curcumin: which plays the major role in scavenging radicals?
    Feng JY; Liu ZQ
    J Agric Food Chem; 2009 Nov; 57(22):11041-6. PubMed ID: 19736944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles.
    Dai F; Chen WF; Zhou B; Yang L; Liu ZL
    Phytother Res; 2009 Sep; 23(9):1220-8. PubMed ID: 19173279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin.
    Barzegar A
    Food Chem; 2012 Dec; 135(3):1369-76. PubMed ID: 22953868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin.
    Priyadarsini KI; Maity DK; Naik GH; Kumar MS; Unnikrishnan MK; Satav JG; Mohan H
    Free Radic Biol Med; 2003 Sep; 35(5):475-84. PubMed ID: 12927597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraordinary radical scavengers: 4-mercaptostilbenes.
    Cao XY; Yang J; Dai F; Ding DJ; Kang YF; Wang F; Li XZ; Liu GY; Yu SS; Jin XL; Zhou B
    Chemistry; 2012 May; 18(19):5898-905. PubMed ID: 22454255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity.
    Xie J; Schaich KM
    J Agric Food Chem; 2014 May; 62(19):4251-60. PubMed ID: 24738928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant properties of phenols.
    Foti MC
    J Pharm Pharmacol; 2007 Dec; 59(12):1673-85. PubMed ID: 18053330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins.
    Estévez L; Otero N; Mosquera RA
    J Phys Chem B; 2010 Jul; 114(29):9706-12. PubMed ID: 20608689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups.
    Chen WF; Deng SL; Zhou B; Yang L; Liu ZL
    Free Radic Biol Med; 2006 Feb; 40(3):526-35. PubMed ID: 16443168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.
    Marković Z; Đorović J; Petrović ZD; Petrović VP; Simijonović D
    J Mol Model; 2015 Nov; 21(11):293. PubMed ID: 26508294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A; Mishra B; Shen L; Mohan H; Kadam RM; Dutta S; Zhang HY; Priyadarsini KI
    Free Radic Biol Med; 2005 Sep; 39(6):811-22. PubMed ID: 16109310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry.
    Litwinienko G; Ingold KU
    J Org Chem; 2005 Oct; 70(22):8982-90. PubMed ID: 16238337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph*) in alcohols.
    Litwinienko G; Ingold KU
    J Org Chem; 2003 May; 68(9):3433-8. PubMed ID: 12713343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity.
    Barclay LR; Vinqvist MR; Mukai K; Goto H; Hashimoto Y; Tokunaga A; Uno H
    Org Lett; 2000 Sep; 2(18):2841-3. PubMed ID: 10964379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.