These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15374590)

  • 1. Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis.
    Ruffell A; Wiltshire P
    Forensic Sci Int; 2004 Oct; 145(1):13-23. PubMed ID: 15374590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SEM-EDS analysis and discrimination of forensic soil.
    Cengiz S; Cengiz Karaca A; Cakir I; Bülent Uner H; Sevindik A
    Forensic Sci Int; 2004 Apr; 141(1):33-7. PubMed ID: 15066711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of forensic geoscience in wildlife crime detection.
    Morgan RM; Wiltshire P; Parker A; Bull PA
    Forensic Sci Int; 2006 Oct; 162(1-3):152-62. PubMed ID: 16875791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential and pitfalls in establishing the provenance of Earth-related samples in forensic investigations.
    Rawlins BG; Kemp SJ; Hodgkinson EH; Riding JB; Vane CH; Poulton C; Freeborough K
    J Forensic Sci; 2006 Jul; 51(4):832-45. PubMed ID: 16882228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary investigation into the use of testate amoebae for the discrimination of forensic soil samples.
    Swindles GT; Ruffell A
    Sci Justice; 2009 Sep; 49(3):182-90. PubMed ID: 19839417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of forensic soil samples via high-performance liquid chromatography and ion chromatography.
    Bommarito CR; Sturdevant AB; Szymanski DW
    J Forensic Sci; 2007 Jan; 52(1):24-30. PubMed ID: 17209906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative mineral phase analysis of dry powders using energy-dispersive X-ray diffraction.
    O'Dwyer JN; Tickner JR
    Appl Radiat Isot; 2008 Oct; 66(10):1359-62. PubMed ID: 18502649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations.
    Zanko LM; Niles HB; Oreskovich JA
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The death of Countess Agusta in Portofino (northern Italy) and the soil from two mismatched slippers.
    Lombardi G
    J Forensic Sci; 2009 Mar; 54(2):395-9. PubMed ID: 19215322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The forensic analysis of soils and sediment taken from the cast of a footprint.
    Bull PA; Parker A; Morgan RM
    Forensic Sci Int; 2006 Oct; 162(1-3):6-12. PubMed ID: 16919902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjunctive use of synchrotron X-ray diffraction and Rietveld refinement in Fe-oxide clays for forensic applications.
    Testoni SA; Prandel LV; Melo VF; Dawson LA; da Silva Salvador FA
    J Forensic Sci; 2022 Sep; 67(5):2020-2031. PubMed ID: 35821593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Raman, IR and XRD analysis of the deterioration on historical monuments: case study from Mexico.
    Ostrooumov M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):498-504. PubMed ID: 19201254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The application of X-ray diffraction in the study of urinary stones].
    Ouyang JM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jan; 26(1):170-4. PubMed ID: 16827372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential use of continuous-flow isotope-ratio mass spectrometry as a tool in forensic soil analysis: a preliminary report.
    Croft DJ; Pye K
    Rapid Commun Mass Spectrom; 2003; 17(23):2581-4. PubMed ID: 14648892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ transformations of fine lead oxide particles in different soils.
    Birkefeld A; Schulin R; Nowack B
    Environ Pollut; 2007 Jan; 145(2):554-61. PubMed ID: 16769165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental analysis of soil samples for forensic purposes by inductively coupled plasma spectrometry--precision considerations.
    Pye K; Blott SJ; Wray DS
    Forensic Sci Int; 2006 Jul; 160(2-3):178-92. PubMed ID: 16271288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical and mineralogical studies of ore and impurities from a chromite mineral using X-ray analysis, electrochemical and microscopy techniques.
    Sánchez-Ramos S; Doménech-Carbó A; Gimeno-Adelantado JV; Peris-Vicente J
    Talanta; 2008 Feb; 74(5):1592-7. PubMed ID: 18371822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cremains using X-ray diffraction spectroscopy and a comparison to trace element analysis.
    Bergslien ET; Bush M; Bush PJ
    Forensic Sci Int; 2008 Mar; 175(2-3):218-26. PubMed ID: 17764861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical, physical and mineralogical characterization of soils from the Curitiba Metropolitan Region for forensic purpose.
    Melo VF; Barbar LC; Zamora PG; Schaefer CE; Cordeiro GA
    Forensic Sci Int; 2008 Aug; 179(2-3):123-34. PubMed ID: 18556163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral phases of weathered and recent electric arc furnace dust.
    Martins FM; dos Reis Neto JM; da Cunha CJ
    J Hazard Mater; 2008 Jun; 154(1-3):417-25. PubMed ID: 18037237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.