These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 15374757)
1. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Li KW; Chen CJ Appl Ergon; 2004 Nov; 35(6):499-507. PubMed ID: 15374757 [TBL] [Abstract][Full Text] [Related]
2. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants. Li KW; Wu HH; Lin YC Appl Ergon; 2006 Nov; 37(6):743-8. PubMed ID: 16427022 [TBL] [Abstract][Full Text] [Related]
3. Assessment of slip resistance under footwear materials, tread designs, floor contamination, and floor inclination conditions. Li KW; Chen CY; Chen CC; Liu L Work; 2012; 41 Suppl 1():3349-51. PubMed ID: 22317227 [TBL] [Abstract][Full Text] [Related]
4. The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane. Manning DP; Jones C Appl Ergon; 2001 Apr; 32(2):185-96. PubMed ID: 11277511 [TBL] [Abstract][Full Text] [Related]
5. Effects of slip testing parameters on measured coefficient of friction. Beschorner KE; Redfern MS; Porter WL; Debski RE Appl Ergon; 2007 Nov; 38(6):773-80. PubMed ID: 17196925 [TBL] [Abstract][Full Text] [Related]
6. The influence of footwear tread groove parameters on available friction. Blanchette MG; Powers CM Appl Ergon; 2015 Sep; 50():237-41. PubMed ID: 25959339 [TBL] [Abstract][Full Text] [Related]
7. Floor/shoe slip resistance measurement. Chaffin DB; Woldstad JC; Trujillo A Am Ind Hyg Assoc J; 1992 May; 53(5):283-9. PubMed ID: 1609738 [TBL] [Abstract][Full Text] [Related]
8. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes. Beschorner KE; Nasarwanji M; Deschler C; Hemler SL Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332 [TBL] [Abstract][Full Text] [Related]
9. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces. Liu LW; Lee YH; Lin CJ; Li KW; Chen CY PLoS One; 2013; 8(7):e68989. PubMed ID: 23894388 [TBL] [Abstract][Full Text] [Related]
10. Slip resistant properties of footwear on ice. Gao C; Abeysekera J; Hirvonen M; Grönqvist R Ergonomics; 2004 May; 47(6):710-6. PubMed ID: 15204296 [TBL] [Abstract][Full Text] [Related]
11. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface. Ziaei M; Nabavi SH; Mokhtarinia HR; Tabatabai Ghomshe SF Int J Occup Environ Med; 2013 Jan; 4(1):27-35. PubMed ID: 23279795 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Grönqvist R Ergonomics; 1995 Feb; 38(2):224-241. PubMed ID: 28084937 [TBL] [Abstract][Full Text] [Related]
13. Prediction of coefficient of friction based on footwear outsole features. Iraqi A; Vidic NS; Redfern MS; Beschorner KE Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996 [TBL] [Abstract][Full Text] [Related]
14. Effect of workers' shoe wear on objective and subjective assessment of slipperiness. Chiou SY; Bhattacharya A; Succop PA Am Ind Hyg Assoc J; 1996 Sep; 57(9):825-31. PubMed ID: 8865591 [TBL] [Abstract][Full Text] [Related]
15. Friction between footwear and floor covered with solid particles under dry and wet conditions. Li KW; Meng F; Zhang W Int J Occup Saf Ergon; 2014; 20(1):43-53. PubMed ID: 24629869 [TBL] [Abstract][Full Text] [Related]
16. Differences in Friction Performance between New and Worn Shoes. Cook A; Hemler S; Sundaram V; Chanda A; Beschorner K IISE Trans Occup Ergon Hum Factors; 2020; 8(4):209-214. PubMed ID: 33955322 [TBL] [Abstract][Full Text] [Related]
17. Validating the ability of a portable shoe-floor friction testing device, NextSTEPS, to predict human slips. Beschorner KE; Chanda A; Moyer BE; Reasinger A; Griffin SC; Johnston IM Appl Ergon; 2023 Jan; 106():103854. PubMed ID: 35973317 [TBL] [Abstract][Full Text] [Related]
18. The effect of contact area on friction measured with the portable inclinable articulated strut slip tester (PIAST). Chang WR; Lesch MF; Chang CC Ergonomics; 2008 Dec; 51(12):1984-97. PubMed ID: 19034788 [TBL] [Abstract][Full Text] [Related]
19. Physiological and psychophysical responses in handling maximum acceptable weights under different footwear--floor friction conditions. Li KW; Yu RF; Han XL Appl Ergon; 2007 May; 38(3):259-65. PubMed ID: 17010302 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical modeling of footwear-fluid-floor interaction during slips. Gupta S; Chanda A J Biomech; 2023 Jul; 156():111690. PubMed ID: 37356270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]