These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 153748)

  • 1. Effects of general anesthetics on lipid protein interactions and ATPase activity in mitochondria.
    Lenaz G; Curatola G; Mazzanti L; Parenti-Castelli G; Bertoli E
    Biochem Pharmacol; 1978; 27(24):2835-44. PubMed ID: 153748
    [No Abstract]   [Full Text] [Related]  

  • 2. A conformational model of the action of general anesthetics at the membrane level. III. Anesthetics and the properties of membrane-bound enzymes: mitochondrial ATPase.
    Lenaz G; Curatola G; Mazzanti L; Parenti-Castelli G; Landi L; Sechi AM
    Ital J Biochem; 1978; 27(6):431-49. PubMed ID: 158576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid protein interactions in mitochondria. VIII. Effect of general anesthetics on the mobility of spin labels in lipid vesicles and mitochondrial membranes.
    Mazzanti L; Curatola G; Zolese G; Bertoli E; Lenaz G
    J Bioenerg Biomembr; 1979 Apr; 11(1-2):17-32. PubMed ID: 233470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid dynamics and lipid-protein interaction in isolated beef-heart mitochondrial ATPase complex.
    Solaini G; Bertoli E
    FEBS Lett; 1981 Sep; 132(1):127-8. PubMed ID: 6457753
    [No Abstract]   [Full Text] [Related]  

  • 5. Lipid protein interactions in mitochondrial ATPase.
    Lenaz G; Curatola G; Mazzanti L; Bertoli E
    Ital J Biochem; 1981; 30(4):290-301. PubMed ID: 6117539
    [No Abstract]   [Full Text] [Related]  

  • 6. Does mitochondrial ATP synthesis decline as a function of change in the membrane environment with ageing.
    Clandinin MT; Innis SM
    Mech Ageing Dev; 1983; 22(3-4):205-8. PubMed ID: 6226836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical studies on agents affecting the state of membrane lipids: biochemical and pharmacological implications.
    Lenaz G; Curatola G; Mazzanti L; Parenti-Castelli G
    Mol Cell Biochem; 1978 Nov; 22(1):3-32. PubMed ID: 154058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions.
    Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G
    Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential modulation of rat heart mitochondrial membrane-associated enzymes by dietary lipid.
    McMurchie EJ; Abeywardena MY; Charnock JS; Gibson RA
    Biochim Biophys Acta; 1983 Oct; 760(1):13-24. PubMed ID: 6311280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A requirement for ubiquinone in ATPase activity and oxidative phosphorylation.
    Bertoli E; Parenti-Castelli G; Sechi AM; Trigari G; Lenaz G
    Biochem Biophys Res Commun; 1978 Nov; 85(1):1-6. PubMed ID: 154324
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of the effect of scorpion venom (Buthus martensii Kashi) on the rat brain and heart mitochondria.
    Song WX; Yang FY
    Cell Biol Int Rep; 1986 Nov; 10(11):897-904. PubMed ID: 3024848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phospholipids of mitochondria and the activity of their membrane-bound enzymes in development of myocardial necrosis in rats after stress].
    Iakushev VS; Davydov VV
    Ukr Biokhim Zh (1978); 1982; 54(4):389-93. PubMed ID: 6127824
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of the effects of oligomycin and dicyclohexylcarbodiimide on mitochondrial ATPase and related reactions.
    Glaser E; Norling B; Kopecký J; Ernster L
    Eur J Biochem; 1982 Jan; 121(3):525-31. PubMed ID: 6276175
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of proton conduction by the H+ -ATPase in the inner mitochondrial membrane.
    Pansini A; Guerrieri F; Papa S
    Eur J Biochem; 1978 Dec; 92(2):545-51. PubMed ID: 153836
    [No Abstract]   [Full Text] [Related]  

  • 15. Oligomycin-sensitivity-conferring protein.
    Senior AE
    Methods Enzymol; 1979; 55():391-7. PubMed ID: 156848
    [No Abstract]   [Full Text] [Related]  

  • 16. Electron spin resonance studies of the effects of lipids on the environment of proteins in mitochondrial membranes.
    Lenaz G; Curatola G; Mazzanti L; Zolese G; Ferretti G
    Arch Biochem Biophys; 1983 Jun; 223(2):369-80. PubMed ID: 6190436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial membrane modifications induced by adriamycin-mediated electron transport.
    Goormaghtigh E; Pollakis G; Ruysschaert JM
    Biochem Pharmacol; 1983 Mar; 32(5):889-93. PubMed ID: 6838634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of chronic ethanol treatment on oligomycin sensitive ATPase activity in the guinea pig heart.
    Schultheiss HP; Spiegel M; Bolte HD
    Basic Res Cardiol; 1985; 80(5):548-55. PubMed ID: 2934054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conformational model for the action of general anesthetics at the membrane level. I. Theoretical considerations.
    Lenaz G; Curatola G; Mazzanti L; Bigi A; Bertoli E
    Ital J Biochem; 1978; 27(6):378-400. PubMed ID: 755800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of delipidation on proton translocation and ATPase activity in beef heart electron transport particles.
    Pringle MJ; Taber M
    Membr Biochem; 1986; 6(4):347-63. PubMed ID: 2883557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.