BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15375115)

  • 21. Carbon dioxide fixation in 'Archaeoglobus lithotrophicus': are there multiple autotrophic pathways?
    Estelmann S; Ramos-Vera WH; Gad'on N; Huber H; Berg IA; Fuchs G
    FEMS Microbiol Lett; 2011 Jun; 319(1):65-72. PubMed ID: 21410513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction of RuBisCO to Determine Catalytic Constants.
    Orr DJ; Carmo-Silva E
    Methods Mol Biol; 2018; 1770():229-238. PubMed ID: 29978405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.
    Li YH; Ou-Yang FY; Yang CH; Li SY
    Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. D2O solvent isotope effects suggest uniform energy barriers in ribulose-1,5-bisphosphate carboxylase/oxygenase catalysis.
    Tcherkez GG; Bathellier C; Stuart-Williams H; Whitney S; Gout E; Bligny R; Badger M; Farquhar GD
    Biochemistry; 2013 Feb; 52(5):869-77. PubMed ID: 23301499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.
    Farazdaghi H
    Biosystems; 2011 Feb; 103(2):265-84. PubMed ID: 21093535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium.
    Frolov EN; Kublanov IV; Toshchakov SV; Lunev EA; Pimenov NV; Bonch-Osmolovskaya EA; Lebedinsky AV; Chernyh NA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18638-18646. PubMed ID: 31451656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle.
    Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR
    Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato.
    Cen YP; Sage RF
    Plant Physiol; 2005 Oct; 139(2):979-90. PubMed ID: 16183840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateral Gene Transfer Shapes the Distribution of RuBisCO among Candidate Phyla Radiation Bacteria and DPANN Archaea.
    Jaffe AL; Castelle CJ; Dupont CL; Banfield JF
    Mol Biol Evol; 2019 Mar; 36(3):435-446. PubMed ID: 30544151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling.
    Deslandes-Hérold G; Zanella M; Solhaug E; Fischer-Stettler M; Sharma M; Buergy L; Herrfurth C; Colinas M; Feussner I; Abt MR; Zeeman SC
    Plant Cell; 2023 Feb; 35(2):808-826. PubMed ID: 36454674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
    Sato T; Atomi H; Imanaka T
    Science; 2007 Feb; 315(5814):1003-6. PubMed ID: 17303759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions Between Carbon Metabolism and Photosynthetic Electron Transport in a
    Saint-Sorny M; Brzezowski P; Arrivault S; Alric J; Johnson X
    Front Plant Sci; 2022; 13():876439. PubMed ID: 35574084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Channeling of the intermediates and catalytic facilitation to Rubisco in a multienzyme complex of Calvin cycle enzymes.
    Sainis JK; Jawali N
    Indian J Biochem Biophys; 1994 Aug; 31(4):215-20. PubMed ID: 8002001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.
    Bhat JY; Thieulin-Pardo G; Hartl FU; Hayer-Hartl M
    Front Mol Biosci; 2017; 4():20. PubMed ID: 28443288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin-Benson-Bassham cycle.
    Raines CA
    New Phytol; 2022 Oct; 236(2):350-356. PubMed ID: 35860861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state.
    Crafts-Brandner SJ; Law RD
    Planta; 2000 Dec; 212(1):67-74. PubMed ID: 11219585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications.
    Read BA; Tabita FR
    Arch Biochem Biophys; 1994 Jul; 312(1):210-8. PubMed ID: 8031129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6.
    Ivanovsky RN; Fal YI; Berg IA; Ugolkova NV; Krasilnikova EN; Keppen OI; Zakharchuc LM; Zyakun AM
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1743-1748. PubMed ID: 10439413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.