These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15375115)

  • 41. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6.
    Ivanovsky RN; Fal YI; Berg IA; Ugolkova NV; Krasilnikova EN; Keppen OI; Zakharchuc LM; Zyakun AM
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1743-1748. PubMed ID: 10439413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli.
    Tseng IT; Chen YL; Chen CH; Shen ZX; Yang CH; Li SY
    Metab Eng; 2018 May; 47():445-452. PubMed ID: 29704653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis.
    Schrader SM; Kleinbeck KR; Sharkey TD
    Plant Cell Environ; 2007 Jun; 30(6):671-8. PubMed ID: 17470143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ribulose 1,5-bisphosphate carboxylase and phosphoribulokinase in Prochloron.
    Berhow MA; McFadden BA
    Planta; 1983 Aug; 158(4):281-7. PubMed ID: 24264746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle.
    Badger MR; Bek EJ
    J Exp Bot; 2008; 59(7):1525-41. PubMed ID: 18245799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of phosphoglycolate in hyperthermophilic archaea.
    Michimori Y; Izaki R; Su Y; Fukuyama Y; Shimamura S; Nishimura K; Miwa Y; Hamakita S; Shimosaka T; Makino Y; Takeno R; Sato T; Beppu H; Cann I; Kanai T; Nunoura T; Atomi H
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2311390121. PubMed ID: 38593075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities.
    Horken KM; Tabita FR
    Arch Biochem Biophys; 1999 Jan; 361(2):183-94. PubMed ID: 9882445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms.
    Tabita FR; Hanson TE; Satagopan S; Witte BH; Kreel NE
    Philos Trans R Soc Lond B Biol Sci; 2008 Aug; 363(1504):2629-40. PubMed ID: 18487131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subunit interface dynamics in hexadecameric rubisco.
    van Lun M; van der Spoel D; Andersson I
    J Mol Biol; 2011 Sep; 411(5):1083-98. PubMed ID: 21745478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure of a RuBisCO-like protein from the green sulfur bacterium Chlorobium tepidum.
    Li H; Sawaya MR; Tabita FR; Eisenberg D
    Structure; 2005 May; 13(5):779-89. PubMed ID: 15893668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model.
    McNevin D; von Caemmerer S; Farquhar G
    J Exp Bot; 2006; 57(14):3883-900. PubMed ID: 17046981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of Structural Features in Oligomerization, Active-Site Integrity and Ligand Binding of Ribose-1,5-Bisphosphate Isomerase.
    Gogoi P; Kanaujia SP
    Comput Struct Biotechnol J; 2019; 17():333-344. PubMed ID: 30923607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial enzymes involved in carbon dioxide fixation.
    Atomi H
    J Biosci Bioeng; 2002; 94(6):497-505. PubMed ID: 16233341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated CO2?
    Mitchell RA; Theobald JC; Parry MA; Lawlor DW
    J Exp Bot; 2000 Feb; 51 Spec No():391-7. PubMed ID: 10938847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling.
    Zhuang ZY; Li SY
    Bioresour Technol; 2013 Dec; 150():79-88. PubMed ID: 24152790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate.
    Taylor TC; Andersson I
    J Mol Biol; 1997 Jan; 265(4):432-44. PubMed ID: 9034362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CO2 and O2 distribution in Rubisco suggests the small subunit functions as a CO2 reservoir.
    van Lun M; Hub JS; van der Spoel D; Andersson I
    J Am Chem Soc; 2014 Feb; 136(8):3165-71. PubMed ID: 24495214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Revised mechanism of carboxylation of ribulose-1,5-biphosphate by rubisco from large scale quantum chemical calculations.
    Cummins PL; Kannappan B; Gready JE
    J Comput Chem; 2018 Aug; 39(21):1656-1665. PubMed ID: 29756365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO.
    Ashida H; Saito Y; Nakano T; Tandeau de Marsac N; Sekowska A; Danchin A; Yokota A
    J Exp Bot; 2008; 59(7):1543-54. PubMed ID: 18403380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein-bound ribulose bisphosphate correlates with deactivation of ribulose bisphosphate carboxylase in leaves.
    Brooks A; Portis AR
    Plant Physiol; 1988 May; 87(1):244-9. PubMed ID: 16666111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.