BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15375121)

  • 1. Characterization of three new competence-regulated operons in Haemophilus influenzae.
    VanWagoner TM; Whitby PW; Morton DJ; Seale TW; Stull TL
    J Bacteriol; 2004 Oct; 186(19):6409-21. PubMed ID: 15375121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae.
    Bakaletz LO; Baker BD; Jurcisek JA; Harrison A; Novotny LA; Bookwalter JE; Mungur R; Munson RS
    Infect Immun; 2005 Mar; 73(3):1635-43. PubMed ID: 15731063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physical map of the genome of Haemophilus influenzae type b.
    Butler PD; Moxon ER
    J Gen Microbiol; 1990 Dec; 136(12):2333-42. PubMed ID: 1706760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae.
    Sinha S; Mell JC; Redfield RJ
    J Bacteriol; 2012 Oct; 194(19):5245-54. PubMed ID: 22821979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons.
    Carruthers MD; Tracy EN; Dickson AC; Ganser KB; Munson RS; Bakaletz LO
    J Bacteriol; 2012 Apr; 194(8):1927-33. PubMed ID: 22328674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA as a nutrient: novel role for bacterial competence gene homologs.
    Finkel SE; Kolter R
    J Bacteriol; 2001 Nov; 183(21):6288-93. PubMed ID: 11591672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of pilus adhesins from Haemophilus influenzae biotype IV strains.
    Clemans DL; Marrs CF; Bauer RJ; Patel M; Gilsdorf JR
    Infect Immun; 2001 Nov; 69(11):7010-9. PubMed ID: 11598076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of homospecific DNA uptake in Haemophilus influenzae transformation.
    Deich RA; Smith HO
    Mol Gen Genet; 1980 Feb; 177(3):369-74. PubMed ID: 6966371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation.
    Karudapuram S; Barcak GJ
    J Bacteriol; 1997 Aug; 179(15):4815-20. PubMed ID: 9244270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the Haemophilus influenzae uvr-1+ gene: homology with other uvrC-like genes and characterization of the Haemophilus influenzae uvr-1 and uvr-2 mutations.
    Gottschalk VA; Stuy JH
    SAAS Bull Biochem Biotechnol; 1997; 10():49-58. PubMed ID: 9274062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global versus local regulatory roles for Lrp-related proteins: Haemophilus influenzae as a case study.
    Friedberg D; Midkiff M; Calvo JM
    J Bacteriol; 2001 Jul; 183(13):4004-11. PubMed ID: 11395465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a DNA transformation gene required for com101A+ expression and supertransformer phenotype in Haemophilus influenzae.
    Zulty JJ; Barcak GJ
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3616-20. PubMed ID: 7724607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fnr-, NarP- and NarL-dependent regulation of transcription initiation from the Haemophilus influenzae Rd napF (periplasmic nitrate reductase) promoter in Escherichia coli K-12.
    Stewart V; Bledsoe PJ
    J Bacteriol; 2005 Oct; 187(20):6928-35. PubMed ID: 16199562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae.
    Takahata S; Ida T; Senju N; Sanbongi Y; Miyata A; Maebashi K; Hoshiko S
    Antimicrob Agents Chemother; 2007 May; 51(5):1589-95. PubMed ID: 17325223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA binding: a novel function of Pseudomonas aeruginosa type IV pili.
    van Schaik EJ; Giltner CL; Audette GF; Keizer DW; Bautista DL; Slupsky CM; Sykes BD; Irvin RT
    J Bacteriol; 2005 Feb; 187(4):1455-64. PubMed ID: 15687210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into how bacteria take up DNA during transformation.
    Smith HO
    Am J Trop Med Hyg; 1980 Sep; 29(5 Suppl):1085-8. PubMed ID: 6969040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemophilus influenzae polypeptides involved in deoxyribonucleic acid uptake detected by cellular surface protein iodination.
    Concino MF; Goodgal SH
    J Bacteriol; 1981 Oct; 148(1):220-31. PubMed ID: 6974728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of competence and DNA uptake specificity in the Pasteurellaceae.
    Redfield RJ; Findlay WA; Bossé J; Kroll JS; Cameron AD; Nash JH
    BMC Evol Biol; 2006 Oct; 6():82. PubMed ID: 17038178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histidine auxotrophy in commensal and disease-causing nontypeable Haemophilus influenzae.
    Juliao PC; Marrs CF; Xie J; Gilsdorf JR
    J Bacteriol; 2007 Jul; 189(14):4994-5001. PubMed ID: 17496076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans.
    Wang Y; Goodman SD; Redfield RJ; Chen C
    J Bacteriol; 2002 Jul; 184(13):3442-9. PubMed ID: 12057937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.