BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15375129)

  • 1. Contribution of the mismatch DNA repair system to the generation of stationary-phase-induced mutants of Bacillus subtilis.
    Pedraza-Reyes M; Yasbin RE
    J Bacteriol; 2004 Oct; 186(19):6485-91. PubMed ID: 15375129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis.
    Vidales LE; Cárdenas LC; Robleto E; Yasbin RE; Pedraza-Reyes M
    J Bacteriol; 2009 Jan; 191(2):506-13. PubMed ID: 19011023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis.
    Debora BN; Vidales LE; Ramírez R; Ramírez M; Robleto EA; Yasbin RE; Pedraza-Reyes M
    J Bacteriol; 2011 Jan; 193(1):236-45. PubMed ID: 20971907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the mismatch-repair system on stationary-phase mutagenesis in the yeast Saccharomyces cerevisiae.
    Hałas A; Baranowska H; Policińska Z
    Curr Genet; 2002 Dec; 42(3):140-6. PubMed ID: 12491007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of endonuclease V, uracil-DNA glycosylase, and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis.
    López-Olmos K; Hernández MP; Contreras-Garduño JA; Robleto EA; Setlow P; Yasbin RE; Pedraza-Reyes M
    J Bacteriol; 2012 Jan; 194(2):243-52. PubMed ID: 22056936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis.
    Gómez-Marroquín M; Vidales LE; Debora BN; Santos-Escobar F; Obregón-Herrera A; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2015 Jun; 197(11):1963-71. PubMed ID: 25825434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis.
    Leyva-Sánchez HC; Villegas-Negrete N; Abundiz-Yañez K; Yasbin RE; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32041798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida.
    Saumaa S; Tarassova K; Tark M; Tover A; Tegova R; Kivisaar M
    DNA Repair (Amst); 2006 Apr; 5(4):505-14. PubMed ID: 16414311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis.
    Ross C; Pybus C; Pedraza-Reyes M; Sung HM; Yasbin RE; Robleto E
    J Bacteriol; 2006 Nov; 188(21):7512-20. PubMed ID: 16950921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Martin HA; Kidman AA; Socea J; Vallin C; Pedraza-Reyes M; Robleto EA
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32053972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the Bacillus subtilis y shD gene, a mutS paralogue.
    Rossolillo P; Albertini AM
    Mol Gen Genet; 2001 Feb; 264(6):809-18. PubMed ID: 11254128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta clamp directs localization of mismatch repair in Bacillus subtilis.
    Simmons LA; Davies BW; Grossman AD; Walker GC
    Mol Cell; 2008 Feb; 29(3):291-301. PubMed ID: 18280235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations.
    Ambriz-Aviña V; Yasbin RE; Robleto EA; Pedraza-Reyes M
    Curr Microbiol; 2016 Nov; 73(5):721-726. PubMed ID: 27530626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis.
    Villegas-Negrete N; Robleto EA; Obregón-Herrera A; Yasbin RE; Pedraza-Reyes M
    PLoS One; 2017; 12(7):e0179625. PubMed ID: 28700593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA mismatch repair deficiency stimulates N-ethyl-N-nitrosourea-induced mutagenesis and lymphomagenesis.
    Claij N; van der Wal A; Dekker M; Jansen L; te Riele H
    Cancer Res; 2003 May; 63(9):2062-6. PubMed ID: 12727820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis.
    Barajas-Ornelas Rdel C; Ramírez-Guadiana FH; Juárez-Godínez R; Ayala-García VM; Robleto EA; Yasbin RE; Pedraza-Reyes M
    J Bacteriol; 2014 Aug; 196(16):3012-22. PubMed ID: 24914186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis.
    Sung HM; Yasbin RE
    J Bacteriol; 2002 Oct; 184(20):5641-53. PubMed ID: 12270822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of MutS mismatch repair protein to DNA containing UV photoproducts, "mismatched" opposite Watson--Crick and novel nucleotides, in different DNA sequence contexts.
    Hoffman PD; Wang H; Lawrence CW; Iwai S; Hanaoka F; Hays JB
    DNA Repair (Amst); 2005 Aug; 4(9):983-93. PubMed ID: 15996534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair.
    Liao Y; Schroeder JW; Gao B; Simmons LA; Biteen JS
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6898-906. PubMed ID: 26575623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping and visualizing intermediate steps in the mismatch repair pathway in vivo.
    Lenhart JS; Pillon MC; Guarné A; Simmons LA
    Mol Microbiol; 2013 Nov; 90(4):680-98. PubMed ID: 23998896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.