These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15375195)

  • 1. Control of intracellular calcium in the presence of nitric oxide donors in isolated skeletal muscle fibres from mouse.
    Pouvreau S; Allard B; Berthier C; Jacquemond V
    J Physiol; 2004 Nov; 560(Pt 3):779-94. PubMed ID: 15375195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide synthase inhibition affects sarcoplasmic reticulum Ca2+ release in skeletal muscle fibres from mouse.
    Pouvreau S; Jacquemond V
    J Physiol; 2005 Sep; 567(Pt 3):815-28. PubMed ID: 15994183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preserved Ca
    Jaque-Fernandez F; Beaulant A; Berthier C; Monteiro L; Allard B; Casas M; Rieusset J; Jacquemond V
    Diabetologia; 2020 Nov; 63(11):2471-2481. PubMed ID: 32840676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.
    Pouvreau S; Csernoch L; Allard B; Sabatier JM; De Waard M; Ronjat M; Jacquemond V
    Biophys J; 2006 Sep; 91(6):2206-15. PubMed ID: 16782801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Ca(2+) release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres.
    Ikemoto T; Endo M
    Br J Pharmacol; 2001 Oct; 134(4):719-28. PubMed ID: 11606311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres.
    Robin G; Allard B
    J Physiol; 2012 Dec; 590(23):6027-36. PubMed ID: 23006480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of sarcoplasmic reticular Ca(2+)-ATPase inhibition on charge movements and calcium transients in intact amphibian skeletal muscle fibres.
    Chawla S; Skepper JN; Huang CL
    J Physiol; 2002 Mar; 539(Pt 3):869-82. PubMed ID: 11897856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of tetracaine on sarcoplasmic calcium release in mammalian skeletal muscle fibres.
    Csernoch L; Szentesi P; Sárközi S; Szegedi C; Jona I; Kovács L
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):843-57. PubMed ID: 10066909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):317-39. PubMed ID: 8782099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantal Properties of Voltage-Dependent Ca
    Olivera JF; Pizarro G
    J Membr Biol; 2024 Apr; 257(1-2):37-50. PubMed ID: 38460011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological
    Bailey SJ; Gandra PG; Jones AM; Hogan MC; Nogueira L
    J Physiol; 2019 Nov; 597(22):5429-5443. PubMed ID: 31541562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding.
    Hart JD; Dulhunty AF
    J Membr Biol; 2000 Feb; 173(3):227-36. PubMed ID: 10667918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca
    Meizoso-Huesca A; Pearce L; Barclay CJ; Launikonis BS
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.
    Bannister RA; Beam KG
    J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A repetitive mode of activation of discrete Ca2+ release events (Ca2+ sparks) in frog skeletal muscle fibres.
    Klein MG; Lacampagne A; Schneider MF
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):391-411. PubMed ID: 10050007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ryanodine receptor modulation by caffeine challenge modifies Na
    Sarbjit-Singh SS; Matthews HR; Huang CL
    Sci Rep; 2020 Feb; 10(1):2199. PubMed ID: 32042141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra activation component of calcium release in frog muscle fibres.
    Pape PC; Fénelon K; Carrier N
    J Physiol; 2002 Aug; 542(Pt 3):867-86. PubMed ID: 12154185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase.
    Berthier C; Kutchukian C; Bouvard C; Okamura Y; Jacquemond V
    J Gen Physiol; 2015 Apr; 145(4):315-30. PubMed ID: 25825170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained release of calcium elicited by membrane depolarization in ryanodine-injected mouse skeletal muscle fibers.
    Collet C; Jacquemond V
    Biophys J; 2002 Mar; 82(3):1509-23. PubMed ID: 11867465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.