BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 15375646)

  • 21. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum.
    Engels S; Ludwig C; Schweitzer JE; Mack C; Bott M; Schaffer S
    Mol Microbiol; 2005 Jul; 57(2):576-91. PubMed ID: 15978086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies.
    Li L; Wada M; Yokota A
    Proteomics; 2007 Sep; 7(18):3348-57. PubMed ID: 17849411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth.
    Keating LA; Wheeler PR; Mansoor H; Inwald JK; Dale J; Hewinson RG; Gordon SV
    Mol Microbiol; 2005 Apr; 56(1):163-74. PubMed ID: 15773987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain.
    Gubler M; Jetten M; Lee SH; Sinskey AJ
    Appl Environ Microbiol; 1994 Jul; 60(7):2494-500. PubMed ID: 8074527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced recombinant protein production in pyruvate kinase mutant of Bacillus subtilis.
    Pan Z; Cunningham DS; Zhu T; Ye K; Koepsel RR; Domach MM; Ataai MM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1769-78. PubMed ID: 19787348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum.
    Chai X; Shang X; Zhang Y; Liu S; Liang Y; Zhang Y; Wen T
    BMC Biotechnol; 2016 Nov; 16(1):79. PubMed ID: 27852252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
    Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J
    Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetate metabolism and its regulation in Corynebacterium glutamicum.
    Gerstmeir R; Wendisch VF; Schnicke S; Ruan H; Farwick M; Reinscheid D; Eikmanns BJ
    J Biotechnol; 2003 Sep; 104(1-3):99-122. PubMed ID: 12948633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
    Kocan M; Schaffer S; Ishige T; Sorger-Herrmann U; Wendisch VF; Bott M
    J Bacteriol; 2006 Jan; 188(2):724-32. PubMed ID: 16385062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032.
    Cha PH; Park SY; Moon MW; Subhadra B; Oh TK; Kim E; Kim JF; Lee JK
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1061-8. PubMed ID: 19568747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
    Auchter M; Cramer A; Hüser A; Rückert C; Emer D; Schwarz P; Arndt A; Lange C; Kalinowski J; Wendisch VF; Eikmanns BJ
    J Biotechnol; 2011 Jul; 154(2-3):126-39. PubMed ID: 20620178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase.
    Qi SW; Chaudhry MT; Zhang Y; Meng B; Huang Y; Zhao KX; Poetsch A; Jiang CY; Liu S; Liu SJ
    Proteomics; 2007 Oct; 7(20):3775-87. PubMed ID: 17880007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses.
    Phue JN; Noronha SB; Hattacharyya R; Wolfe AJ; Shiloach J
    Biotechnol Bioeng; 2005 Jun; 90(7):805-20. PubMed ID: 15806547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
    Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J
    Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.
    Engels V; Lindner SN; Wendisch VF
    J Bacteriol; 2008 Dec; 190(24):8033-44. PubMed ID: 18849435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
    Uhde A; Youn JW; Maeda T; Clermont L; Matano C; Krämer R; Wendisch VF; Seibold GM; Marin K
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1679-87. PubMed ID: 22854894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The amrG1 gene is involved in the activation of acetate in Corynebacterium glutamicum.
    Ruan H; Gerstmeir R; Schnicke S; Eikmanns BJ
    Sci China C Life Sci; 2005 Apr; 48(2):97-105. PubMed ID: 15986882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032.
    Sawada K; Zen-in S; Wada M; Yokota A
    Metab Eng; 2010 Jul; 12(4):401-7. PubMed ID: 20144730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate.
    Nickel J; Irzik K; van Ooyen J; Eggeling L
    Mol Microbiol; 2010 Oct; 78(1):253-65. PubMed ID: 20923423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.