BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15375755)

  • 1. Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA) -induced model: its potential role in OA pathogenesis.
    Capín-Gutiérrez N; Talamás-Rohana P; González-Robles A; Lavalle-Montalvo C; Kourí JB
    Histol Histopathol; 2004 Oct; 19(4):1125-32. PubMed ID: 15375755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and cytoskeletal aspects of cultivated normal and osteoarthritic human articular chondrocytes after cyclical pressure: a pilot study.
    Fioravanti A; Nerucci F; Annefeld M; Collodel G; Marcolongo R
    Clin Exp Rheumatol; 2003; 21(6):739-46. PubMed ID: 14740453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure.
    Pascarelli NA; Collodel G; Moretti E; Cheleschi S; Fioravanti A
    Int J Mol Sci; 2015 Oct; 16(11):26019-34. PubMed ID: 26528971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments.
    Langelier E; Suetterlin R; Hoemann CD; Aebi U; Buschmann MD
    J Histochem Cytochem; 2000 Oct; 48(10):1307-20. PubMed ID: 10990485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifications of Golgi complex in chondrocytes from osteoarthrotic (OA) rat cartilage.
    Kourí JB; Rojas L; Pérez E; Abbud-Lozoya KA
    J Histochem Cytochem; 2002 Oct; 50(10):1333-40. PubMed ID: 12364566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis.
    Lambrecht S; Verbruggen G; Verdonk PC; Elewaut D; Deforce D
    Osteoarthritis Cartilage; 2008 Feb; 16(2):163-73. PubMed ID: 17643325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture.
    Durrant LA; Archer CW; Benjamin M; Ralphs JR
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):343-53. PubMed ID: 10386772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of p38 pathway leads to OA-like changes in a rat animal model.
    Prasadam I; Mao X; Wang Y; Shi W; Crawford R; Xiao Y
    Rheumatology (Oxford); 2012 May; 51(5):813-23. PubMed ID: 22240502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of early-response to mechanical stress in neonatal rat mandibular condylar chondrocytes.
    Li H; Yang HS; Wu TJ; Zhang XY; Jiang WH; Ma QL; Chen YX; Xu Y; Li S; Hua ZC
    J Cell Physiol; 2010 Jun; 223(3):610-22. PubMed ID: 20127708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of continuous high hydrostatic pressure on the morphology and cytoskeleton of normal and osteoarthritic human chondrocytes cultivated in alginate gels.
    Fioravanti A; Benetti D; Coppola G; Collodel G
    Clin Exp Rheumatol; 2005; 23(6):847-53. PubMed ID: 16396703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do chondrocytes undergo "activation" and "transdifferentiation" during the pathogenesis of osteoarthritis? A review of the ultrastructural and immunohistochemical evidence.
    Kouri JB; Lavalle C
    Histol Histopathol; 2006 Jul; 21(7):793-802. PubMed ID: 16598678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture.
    Uva BM; Masini MA; Sturla M; Prato P; Passalacqua M; Giuliani M; Tagliafierro G; Strollo F
    Brain Res; 2002 May; 934(2):132-9. PubMed ID: 11955476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal processing method to obtain four-color confocal fluorescent images of the cytoskeleton and nucleus in three-dimensional chondrocyte cultures.
    Blanc A; Tran-Khanh N; Filion D; Buschmann MD
    J Histochem Cytochem; 2005 Sep; 53(9):1171-5. PubMed ID: 15933071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons.
    Allani PK; Sum T; Bhansali SG; Mukherjee SK; Sonee M
    Toxicol Appl Pharmacol; 2004 Apr; 196(1):29-36. PubMed ID: 15050405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters.
    McGlashan SR; Cluett EC; Jensen CG; Poole CA
    Dev Dyn; 2008 Aug; 237(8):2013-20. PubMed ID: 18330928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the vimentin cytoskeleton in response to single impact load in an in vitro model of cartilage damage in the rat.
    Henson FM; Vincent TA
    BMC Musculoskelet Disord; 2008 Jun; 9():94. PubMed ID: 18577232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis.
    Blain EJ; Gilbert SJ; Hayes AJ; Duance VC
    Matrix Biol; 2006 Sep; 25(7):398-408. PubMed ID: 16876394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeleton Aberrations in Alkaptonuric Chondrocytes.
    Geminiani M; Gambassi S; Millucci L; Lupetti P; Collodel G; Mazzi L; Frediani B; Braconi D; Marzocchi B; Laschi M; Bernardini G; Santucci A
    J Cell Physiol; 2017 Jul; 232(7):1728-1738. PubMed ID: 27454006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice.
    Oh H; Chun CH; Chun JS
    Arthritis Rheum; 2012 Aug; 64(8):2568-78. PubMed ID: 22488261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations.
    Bernard MA; Hogue DA; Cole WG; Sanford T; Snuggs MB; Montufar-Solis D; Duke PJ; Carson DD; Scott A; Van Winkle WB; Hecht JT
    J Bone Miner Res; 2000 Mar; 15(3):442-50. PubMed ID: 10750558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.