These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15376623)

  • 1. Role of the membrane skeleton in creation of microdomains.
    Ritchie K; Kusumi A
    Subcell Biochem; 2004; 37():233-45. PubMed ID: 15376623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules.
    Kusumi A; Ike H; Nakada C; Murase K; Fujiwara T
    Semin Immunol; 2005 Feb; 17(1):3-21. PubMed ID: 15582485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes.
    Kusumi A; Fujiwara TK; Morone N; Yoshida KJ; Chadda R; Xie M; Kasai RS; Suzuki KG
    Semin Cell Dev Biol; 2012 Apr; 23(2):126-44. PubMed ID: 22309841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model.
    Kusumi A; Fujiwara TK; Chadda R; Xie M; Tsunoyama TA; Kalay Z; Kasai RS; Suzuki KG
    Annu Rev Cell Dev Biol; 2012; 28():215-50. PubMed ID: 22905956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid rafts as a membrane-organizing principle.
    Lingwood D; Simons K
    Science; 2010 Jan; 327(5961):46-50. PubMed ID: 20044567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
    Lenne PF; Wawrezinieck L; Conchonaud F; Wurtz O; Boned A; Guo XJ; Rigneault H; He HT; Marguet D
    EMBO J; 2006 Jul; 25(14):3245-56. PubMed ID: 16858413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Update on lipid membrane microdomains.
    Schmitz G; Grandl M
    Curr Opin Clin Nutr Metab Care; 2008 Mar; 11(2):106-12. PubMed ID: 18301084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane.
    Fujiwara TK; Iwasawa K; Kalay Z; Tsunoyama TA; Watanabe Y; Umemura YM; Murakoshi H; Suzuki KG; Nemoto YL; Morone N; Kusumi A
    Mol Biol Cell; 2016 Apr; 27(7):1101-19. PubMed ID: 26864625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast lipid rafts?--an emerging view.
    Wachtler V; Balasubramanian MK
    Trends Cell Biol; 2006 Jan; 16(1):1-4. PubMed ID: 16337381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the organization of plasma membrane and its role in signal transduction.
    Suzuki KG
    Int Rev Cell Mol Biol; 2015; 317():67-96. PubMed ID: 26008784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rafts--the current picture.
    Grzybek M; Kozubek A; Dubielecka P; Sikorski AF
    Folia Histochem Cytobiol; 2005; 43(1):3-10. PubMed ID: 15871556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.
    Nicolson GL
    Biochim Biophys Acta; 2014 Jun; 1838(6):1451-66. PubMed ID: 24189436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative morphofunctional description of planar rafts and caveolae].
    Pleskova SN; Pudovkina EE
    Tsitologiia; 2013; 55(8):586-92. PubMed ID: 25486792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane domains in lymphocytes - from lipid rafts to protein scaffolds.
    Harder T; Engelhardt KR
    Traffic; 2004 Apr; 5(4):265-75. PubMed ID: 15030568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts.
    Kusumi A; Koyama-Honda I; Suzuki K
    Traffic; 2004 Apr; 5(4):213-30. PubMed ID: 15030563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPI-anchored protein cleavage in the regulation of transmembrane signals.
    Sharom FJ; Radeva G
    Subcell Biochem; 2004; 37():285-315. PubMed ID: 15376625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques.
    Suzuki K; Ritchie K; Kajikawa E; Fujiwara T; Kusumi A
    Biophys J; 2005 May; 88(5):3659-80. PubMed ID: 15681644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy.
    Subczynski WK; Kusumi A
    Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid rafts generate digital-like signal transduction in cell plasma membranes.
    Suzuki KG
    Biotechnol J; 2012 Jun; 7(6):753-61. PubMed ID: 22488962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane.
    Goiko M; de Bruyn JR; Heit B
    Sci Rep; 2016 Oct; 6():34987. PubMed ID: 27725698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.