These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15376673)

  • 1. Fine structure of hearing threshold and loudness perception.
    Mauermann M; Long GR; Kollmeier B
    J Acoust Soc Am; 2004 Aug; 116(2):1066-80. PubMed ID: 15376673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered.
    Buus S; Florentine M
    J Assoc Res Otolaryngol; 2002 Jun; 3(2):120-39. PubMed ID: 12162363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a loudness model for hearing aid fitting: III. A general method for deriving initial fittings for hearing aids with multi-channel compression.
    Moore BC; Glasberg BR; Stone MA
    Br J Audiol; 1999 Aug; 33(4):241-58. PubMed ID: 10509859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of categorical loudness scaling and its relation to threshold.
    Al-Salim SC; Kopun JG; Neely ST; Jesteadt W; Stiegemann B; Gorga MP
    Ear Hear; 2010 Aug; 31(4):567-78. PubMed ID: 20588122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of an objective electrophysiological loudness scaling: a kernel-based novelty detection approach.
    Mariam M; Delb W; Schick B; Strauss DJ
    Artif Intell Med; 2012 Jul; 55(3):185-95. PubMed ID: 22592125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loudness perception and frequency discrimination in subjects with steeply sloping hearing loss: possible correlates of neural plasticity.
    McDermott HJ; Lech M; Kornblum MS; Irvine DR
    J Acoust Soc Am; 1998 Oct; 104(4):2314-25. PubMed ID: 10491696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acoustic reflex threshold: not predictive for loudness perception in normally-hearing listeners.
    Olsen SO; Rasmussen AN; Nielsen LH; Borgkvist BV
    Audiology; 1999; 38(6):303-7. PubMed ID: 10582530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-modality matching: a tool for measuring loudness in sensorineural impairment.
    Hellman RP
    Ear Hear; 1999 Jun; 20(3):193-213. PubMed ID: 10386847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loudness functions with air and bone conduction stimulation in normal-hearing subjects using a categorical loudness scaling procedure.
    Stenfelt S; Zeitooni M
    Hear Res; 2013 Jul; 301():85-92. PubMed ID: 23562775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic screening and detection of threshold fine structure.
    Heise SJ; Verhey JL; Mauermann M
    Int J Audiol; 2008 Aug; 47(8):520-32. PubMed ID: 18698525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in loudness of positive and negative Schroeder-phase tone complexes as a function of the fundamental frequency.
    Mauermann M; Hohmann V
    J Acoust Soc Am; 2007 Feb; 121(2):1028-39. PubMed ID: 17348525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basilar membrane nonlinearity and loudness.
    Schlauch RS; DiGiovanni JJ; Ries DT
    J Acoust Soc Am; 1998 Apr; 103(4):2010-20. PubMed ID: 9566323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears.
    Gorga MP; Neely ST; Dierking DM; Dorn PA; Hoover BM; Fitzpatrick DF
    J Acoust Soc Am; 2003 Jul; 114(1):263-78. PubMed ID: 12880040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects.
    Dalhoff E; Turcanu D; Vetešník A; Gummer AW
    Hear Res; 2013 Feb; 296():67-82. PubMed ID: 23268357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced loudness reduction as a function of exposure time and signal frequency.
    Wagner E; Scharf B
    J Acoust Soc Am; 2006 Feb; 119(2):1012-20. PubMed ID: 16521763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tone decay for hearing-impaired listeners with and without dead regions in the cochlea.
    Huss M; Moore BC
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3283-94. PubMed ID: 14714809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the concept of softness imperception: loudness near threshold for hearing-impaired ears.
    Moore BC
    J Acoust Soc Am; 2004 Jun; 115(6):3103-11. PubMed ID: 15237835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the loudness of modulated sounds.
    Moore BC; Vickers DA; Baer T; Launer S
    J Acoust Soc Am; 1999 May; 105(5):2757-72. PubMed ID: 10335628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.