These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15376727)

  • 1. Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis.
    Cho CH; Murakami T; Sawae Y; Sakai N; Miura H; Kawano T; Iwamoto Y
    Proc Inst Mech Eng H; 2004; 218(4):251-9. PubMed ID: 15376727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of microscopic surface asperities on the wear of ultra-high molecular weight polyethylene in a knee prosthesis.
    Cho CH; Murakami T; Sawae Y
    Proc Inst Mech Eng H; 2010; 224(4):515-29. PubMed ID: 20476500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.
    Kang L; Galvin AL; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):33-46. PubMed ID: 16459444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of design, materials and kinematics on the in vitro wear of total knee replacements.
    McEwen HM; Barnett PI; Bell CJ; Farrar R; Auger DD; Stone MH; Fisher J
    J Biomech; 2005 Feb; 38(2):357-65. PubMed ID: 15598464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of the effects of material parameters on the lubrication mechanism for knee prosthesis.
    Di Paolo J; Berli ME
    Comput Methods Biomech Biomed Engin; 2006 Apr; 9(2):79-89. PubMed ID: 16880159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational wear prediction of a total knee replacement from in vivo kinematics.
    Fregly BJ; Sawyer WG; Harman MK; Banks SA
    J Biomech; 2005 Feb; 38(2):305-14. PubMed ID: 15598458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine for the preliminary investigation of design features influencing the wear behaviour of knee prostheses.
    McGloughlin TM; Murphy DM; Kavanagh AG
    Proc Inst Mech Eng H; 2004; 218(1):51-62. PubMed ID: 14982346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of in vitro wear of machined and molded UHMWPE tibial inserts on TKR kinematics.
    Benson LC; DesJardins JD; LaBerge M
    J Biomed Mater Res; 2001; 58(5):496-504. PubMed ID: 11505423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoindentation properties of compression-moulded ultra-high molecular weight polyethylene.
    Ho SP; Riester L; Drews M; Boland T; LaBerge M
    Proc Inst Mech Eng H; 2003; 217(5):357-66. PubMed ID: 14558648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wear predictions for UHMWPE material with various surface properties used on the femoral component in total knee arthroplasty: a computational simulation study.
    Kang KT; Son J; Kim HJ; Baek C; Kwon OR; Koh YG
    J Mater Sci Mater Med; 2017 Jul; 28(7):105. PubMed ID: 28534290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect on wear of lift-off in total knee arthroplasty.
    Todo S; Blunn GW; Harrison M; Freeman MA
    Biomed Mater Eng; 2003; 13(3):231-4. PubMed ID: 12883172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components.
    Bell CJ; Walker PS; Abeysundera MR; Simmons JM; King PM; Blunn GW
    J Arthroplasty; 1998 Apr; 13(3):280-90. PubMed ID: 9590639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear of contemporary total knee replacements--a knee simulator study of six current designs.
    Utzschneider S; Harrasser N; Schroeder C; Mazoochian F; Jansson V
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):583-8. PubMed ID: 19450910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method of in vitro wear assessment of the UHMWPE tibial insert in total knee replacement.
    Affatato S; Cristofolini L; Leardini W; Erani P; Zavalloni M; Tigani D; Viceconti M
    Artif Organs; 2008 Dec; 32(12):942-8. PubMed ID: 19133022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delamination and adhesive wear behavior of alpha-tocopherol-stabilized irradiated ultrahigh-molecular-weight polyethylene.
    Wannomae KK; Christensen SD; Micheli BR; Rowell SL; Schroeder DW; Muratoglu OK
    J Arthroplasty; 2010 Jun; 25(4):635-43. PubMed ID: 19493652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An observation on subsurface defects of ultra high molecular weight polyethylene due to rolling contact.
    Ohashi M; Tomita N; Ikada Y; Ikeuchi K; Motoike T
    Biomed Mater Eng; 1996; 6(6):441-51. PubMed ID: 9138654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations.
    Villa T; Migliavacca F; Gastaldi D; Colombo M; Pietrabissa R
    J Biomech; 2004 Jan; 37(1):45-53. PubMed ID: 14672567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative movements between Kinemax Plus tibial inserts and the tibial base-plates.
    Ash HE; Scholes SC; Parkin R; Unsworth A
    Proc Inst Mech Eng H; 2003; 217(2):99-104. PubMed ID: 12666776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ceramic versus cobalt-chrome femoral components; wear of polyethylene insert in total knee prosthesis.
    Oonishi H; Ueno M; Kim SC; Oonishi H; Iwamoto M; Kyomoto M
    J Arthroplasty; 2009 Apr; 24(3):374-82. PubMed ID: 18524533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.