These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15376949)

  • 1. Folding type specific secondary structure propensities of synonymous codons.
    Gu W; Zhou T; Ma J; Sun X; Lu Z
    IEEE Trans Nanobioscience; 2003 Sep; 2(3):150-7. PubMed ID: 15376949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indications that "codon boundaries" are physico-chemically defined and that protein-folding information is contained in the redundant exon bases.
    Biro JC
    Theor Biol Med Model; 2006 Aug; 3():28. PubMed ID: 16893453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid propensities for secondary structures are influenced by the protein structural class.
    Costantini S; Colonna G; Facchiano AM
    Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between synonymous codon usage and protein structure.
    Xie T; Ding D
    FEBS Lett; 1998 Aug; 434(1-2):93-6. PubMed ID: 9738458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widespread position-specific conservation of synonymous rare codons within coding sequences.
    Chaney JL; Steele A; Carmichael R; Rodriguez A; Specht AT; Ngo K; Li J; Emrich S; Clark PL
    PLoS Comput Biol; 2017 May; 13(5):e1005531. PubMed ID: 28475588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choice of synonymous codons associated with protein folding.
    Huang JT; Xing DJ; Huang W
    Proteins; 2012 Aug; 80(8):2056-62. PubMed ID: 22513798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of protein coding sequences on protein folding rates of all-β proteins.
    Li RF; Li H
    Gen Physiol Biophys; 2011 Jun; 30(2):154-61. PubMed ID: 21613670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.
    Kahali B; Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2007 Mar; 354(3):693-9. PubMed ID: 17258174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type.
    Fujiwara K; Toda H; Ikeguchi M
    BMC Struct Biol; 2012 Aug; 12():18. PubMed ID: 22857400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The imprint of codons on protein structure.
    Deane CM; Saunders R
    Biotechnol J; 2011 Jun; 6(6):641-9. PubMed ID: 21567957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases.
    Biro JC
    Theor Biol Med Model; 2008 Jul; 5():14. PubMed ID: 18664268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of codon choice on translation process in Saccharomyces cerevisiae: folding class, protein function and secondary structure.
    Santoni D
    J Theor Biol; 2021 Oct; 526():110806. PubMed ID: 34111456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synonymous codon usage in different protein secondary structural classes of human genes: implication for increased non-randomness of GC3 rich genes towards protein stability.
    Mukhopadhyay P; Basak S; Ghosh TC
    J Biosci; 2007 Aug; 32(5):947-63. PubMed ID: 17914237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific correlations between relative synonymous codon usage and protein secondary structure.
    Oresic M; Shalloway D
    J Mol Biol; 1998 Aug; 281(1):31-48. PubMed ID: 9680473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning approaches demonstrate that protein structures carry information about their genetic coding.
    Ackerman-Schraier L; Rosenberg AA; Marx A; Bronstein AM
    Sci Rep; 2022 Dec; 12(1):21968. PubMed ID: 36539476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coding nucleic acids are chaperons for protein folding: a novel theory of protein folding.
    Biro JC
    Gene; 2013 Feb; 515(2):249-57. PubMed ID: 23266645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes.
    Chen GF; Inouye M
    Nucleic Acids Res; 1990 Mar; 18(6):1465-73. PubMed ID: 2109307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.