BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15377087)

  • 1. In vivo heating of magnetic nanoparticles in alternating magnetic field.
    Babincová M; Altanerová V; Altaner C; Cicmanec P; Babinec P
    Med Phys; 2004 Aug; 31(8):2219-21. PubMed ID: 15377087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.
    Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J
    Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy.
    Babincová M; Cicmanec P; Altanerová V; Altaner C; Babinec P
    Bioelectrochemistry; 2002 Jan; 55(1-2):17-9. PubMed ID: 11786331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local heating of discrete droplets using magnetic porous silicon-based photonic crystals.
    Park JH; Derfus AM; Segal E; Vecchio KS; Bhatia SN; Sailor MJ
    J Am Chem Soc; 2006 Jun; 128(24):7938-46. PubMed ID: 16771508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field.
    Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Tsunooka N; Kawachi K
    J Surg Res; 2008 May; 146(1):110-6. PubMed ID: 18155250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of temperature increase with different amounts of magnetite in liver tissue samples.
    Hilger I; Andrä W; Bähring R; Daum A; Hergt R; Kaiser WA
    Invest Radiol; 1997 Nov; 32(11):705-12. PubMed ID: 9387059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.
    Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A
    Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles.
    Lacroix LM; Carrey J; Respaud M
    Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.
    Tseng HY; Lee GB; Lee CY; Shih YH; Lin XZ
    IET Nanobiotechnol; 2009 Jun; 3(2):46-54. PubMed ID: 19485552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a second-generation radiofrequency ablation using sintered MgFe(2)O(4) needles and alternating magnetic field for human cancer therapy.
    Watanabe Y; Sato K; Yukumi S; Yoshida M; Yamamoto Y; Doi T; Sugishita H; Naohara T; Maehara T; Aono H; Kawachi K
    Biomed Mater Eng; 2009; 19(2-3):101-10. PubMed ID: 19581703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating of cardiovascular stents in intense radiofrequency magnetic fields.
    Foster KR; Goldberg R; Bonsignore C
    Bioelectromagnetics; 1999; 20(2):112-6. PubMed ID: 10029137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanohyperthermia of malignant tumors. II. In vivo tumor heating with manganese perovskite nanoparticles.
    Bubnovskaya L; Belous A; Solopan A; Podoltsev A; Kondratenko I; Kovelskaya A; Sergienko T; Osinsky S
    Exp Oncol; 2012 Dec; 34(4):336-9. PubMed ID: 23302992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vivo coil setup for AC magnetic field-mediated magnetic nanoparticle heating experiments.
    Miaskowski A; Balakrishnan P; Subramanian M; Hovorka O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3991-3994. PubMed ID: 31946746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution.
    Johannsen M; Gneveckow U; Thiesen B; Taymoorian K; Cho CH; Waldöfner N; Scholz R; Jordan A; Loening SA; Wust P
    Eur Urol; 2007 Dec; 52(6):1653-61. PubMed ID: 17125906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic multicore nanoparticles for hyperthermia--influence of particle immobilization in tumour tissue on magnetic properties.
    Dutz S; Kettering M; Hilger I; Müller R; Zeisberger M
    Nanotechnology; 2011 Jul; 22(26):265102. PubMed ID: 21576784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction heating and operator exposure to electromagnetic fields.
    Stuchly MA; Lecuyer DW
    Health Phys; 1985 Nov; 49(5):693-700. PubMed ID: 4066332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.