These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 15377152)
1. Tetrahydrobiisoquinoline derivatives by reaction of dopamine with glyoxal: a novel potential degenerative pathway of catecholamines under oxidative stress conditions. Manini P; Panzella L; Tedesco I; Petitto F; Russo GL; Napolitano A; Palumbo A; d'Ischia M Chem Res Toxicol; 2004 Sep; 17(9):1190-8. PubMed ID: 15377152 [TBL] [Abstract][Full Text] [Related]
2. The carcinogenic significance of reactive intermediates derived from 3-acetoxy- and 5-acetoxy-2-hydroxy-N-nitrosomorpholine. Loeppky RN; Sukhtankar S; Gu F; Park M Chem Res Toxicol; 2005 Dec; 18(12):1955-66. PubMed ID: 16359186 [TBL] [Abstract][Full Text] [Related]
3. Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds. Manini P; La Pietra P; Panzella L; Napolitano A; d'Ischia M Carbohydr Res; 2006 Aug; 341(11):1828-33. PubMed ID: 16697986 [TBL] [Abstract][Full Text] [Related]
4. Nuclear proteasome activation and degradation of carboxymethylated histones in human keratinocytes following glyoxal treatment. Cervantes-Laurean D; Roberts MJ; Jacobson EL; Jacobson MK Free Radic Biol Med; 2005 Mar; 38(6):786-95. PubMed ID: 15721989 [TBL] [Abstract][Full Text] [Related]
6. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Sai Y; Wu Q; Le W; Ye F; Li Y; Dong Z Toxicol In Vitro; 2008 Sep; 22(6):1461-8. PubMed ID: 18579341 [TBL] [Abstract][Full Text] [Related]
7. Metal-catalyzed oxidation of protein-bound dopamine. Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550 [TBL] [Abstract][Full Text] [Related]
8. Hepatocyte inflammation model for cytotoxicity research: fructose or glycolaldehyde as a source of endogenous toxins. Feng CY; Wong S; Dong Q; Bruce J; Mehta R; Bruce WR; O'Brien PJ Arch Physiol Biochem; 2009 May; 115(2):105-11. PubMed ID: 19485706 [TBL] [Abstract][Full Text] [Related]
9. Redox interactions of nitric oxide with dopamine and its derivatives. Antunes F; Nunes C; Laranjinha J; Cadenas E Toxicology; 2005 Mar; 208(2):207-12. PubMed ID: 15691585 [TBL] [Abstract][Full Text] [Related]
10. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)). Nozière B; Dziedzic P; Córdova A J Phys Chem A; 2009 Jan; 113(1):231-7. PubMed ID: 19118483 [TBL] [Abstract][Full Text] [Related]
11. Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner. Pham CL; Leong SL; Ali FE; Kenche VB; Hill AF; Gras SL; Barnham KJ; Cappai R J Mol Biol; 2009 Apr; 387(3):771-85. PubMed ID: 19361420 [TBL] [Abstract][Full Text] [Related]
12. Polychlorinated biphenyl mixture aroclor 1254-induced oxidative stress plays a role in dopaminergic cell injury. Lee DW; Opanashuk LA Neurotoxicology; 2004 Dec; 25(6):925-39. PubMed ID: 15474611 [TBL] [Abstract][Full Text] [Related]
13. A one-carbon modification of protein lysine associated with elevated oxidative stress in human substantia nigra. Floor E; Maples AM; Rankin CA; Yaganti VM; Shank SS; Nichols GS; O'Laughlin M; Galeva NA; Williams TD J Neurochem; 2006 Apr; 97(2):504-14. PubMed ID: 16539661 [TBL] [Abstract][Full Text] [Related]
14. The formation of catechol isoquinolines in PC12 cells exposed to manganese. Deng Y; Luan Y; Qing H; Xie H; Lu J; Zhou J Neurosci Lett; 2008 Oct; 444(2):122-6. PubMed ID: 18722506 [TBL] [Abstract][Full Text] [Related]
15. Endogenous tetrahydroisoquinolines associated with Parkinson's disease mimic the feedback inhibition of tyrosine hydroxylase by catecholamines. Scholz J; Toska K; Luborzewski A; Maass A; Schünemann V; Haavik J; Moser A FEBS J; 2008 May; 275(9):2109-21. PubMed ID: 18355318 [TBL] [Abstract][Full Text] [Related]
16. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. Calabrese V; Mancuso C; Ravagna A; Perluigi M; Cini C; De Marco C; Butterfield DA; Stella AM J Neurochem; 2007 May; 101(3):709-17. PubMed ID: 17241115 [TBL] [Abstract][Full Text] [Related]
17. Myoglobin modification by enzyme-generated dopamine reactive species. Nicolis S; Zucchelli M; Monzani E; Casella L Chemistry; 2008; 14(28):8661-73. PubMed ID: 18688822 [TBL] [Abstract][Full Text] [Related]
18. L-dopa- and dopamine-(R)-alpha-lipoic acid conjugates as multifunctional codrugs with antioxidant properties. Di Stefano A; Sozio P; Cocco A; Iannitelli A; Santucci E; Costa M; Pecci L; Nasuti C; Cantalamessa F; Pinnen F J Med Chem; 2006 Feb; 49(4):1486-93. PubMed ID: 16480285 [TBL] [Abstract][Full Text] [Related]
19. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Zeng J; Davies MJ Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Wells-Knecht KJ; Zyzak DV; Litchfield JE; Thorpe SR; Baynes JW Biochemistry; 1995 Mar; 34(11):3702-9. PubMed ID: 7893666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]