BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 15377228)

  • 1. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency.
    Kochian LV; Hoekenga OA; Pineros MA
    Annu Rev Plant Biol; 2004; 55():459-93. PubMed ID: 15377228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.
    Kochian LV; Piñeros MA; Liu J; Magalhaes JV
    Annu Rev Plant Biol; 2015; 66():571-98. PubMed ID: 25621514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.
    Sade H; Meriga B; Surapu V; Gadi J; Sunita MS; Suravajhala P; Kavi Kishor PB
    Biometals; 2016 Apr; 29(2):187-210. PubMed ID: 26796895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity?
    Chen RF; Zhang FL; Zhang QM; Sun QB; Dong XY; Shen RF
    J Sci Food Agric; 2012 Mar; 92(5):995-1000. PubMed ID: 21815161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and molecular mechanisms of aluminum tolerance in plants.
    Simões CC; Melo JO; Magalhaes JV; Guimarães CT
    Genet Mol Res; 2012 Jul; 11(3):1949-57. PubMed ID: 22869550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils.
    Chen ZC; Liao H
    J Genet Genomics; 2016 Nov; 43(11):631-638. PubMed ID: 27890545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aluminum stress signaling in plants.
    Panda SK; Baluska F; Matsumoto H
    Plant Signal Behav; 2009 Jul; 4(7):592-7. PubMed ID: 19820334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of aluminum tolerance in plants.
    Zheng L; Lan P; Shen RF; Li WF
    Proteomics; 2014 Mar; 14(4-5):566-78. PubMed ID: 24339160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil.
    Wang X; Ai S; Liao H
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Fe
    Das S; Tyagi W; Rai M; Yumnam JS
    Biotechnol Genet Eng Rev; 2017 Apr; 33(1):97-117. PubMed ID: 28927358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils.
    Ryan PR; Tyerman SD; Sasaki T; Furuichi T; Yamamoto Y; Zhang WH; Delhaize E
    J Exp Bot; 2011 Jan; 62(1):9-20. PubMed ID: 20847099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils.
    Magalhaes JV; Piñeros MA; Maciel LS; Kochian LV
    Front Plant Sci; 2018; 9():1420. PubMed ID: 30319678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.
    Magalhaes JV; Liu J; Guimarães CT; Lana UG; Alves VM; Wang YH; Schaffert RE; Hoekenga OA; Piñeros MA; Shaff JE; Klein PE; Carneiro NP; Coelho CM; Trick HN; Kochian LV
    Nat Genet; 2007 Sep; 39(9):1156-61. PubMed ID: 17721535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect on soil chemistry of genetically modified (GM) vs. non-GM maize.
    Liu N; Zhu P; Peng C; Kang L; Gao H; Clarke NJ; Clarke JL
    GM Crops; 2010; 1(3):157-61. PubMed ID: 21844670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological responses and tolerance of plant shoot to aluminum toxicity.
    Chen LS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):143-55. PubMed ID: 16622312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of aluminium tolerance genes.
    Delhaize E; Ma JF; Ryan PR
    Trends Plant Sci; 2012 Jun; 17(6):341-8. PubMed ID: 22459757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Process and mechanism of plants in overcoming acid soil aluminum stress].
    Zhao TL; Xie GN; Zhang XX; Qiu LQ; Wang N; Zhang SZ
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):3003-11. PubMed ID: 24483099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family.
    Magalhaes JV
    Ann Bot; 2010 Jul; 106(1):199-203. PubMed ID: 20511585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India.
    Cakmak I
    J Trace Elem Med Biol; 2009; 23(4):281-9. PubMed ID: 19747624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.