BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15377272)

  • 1. Study of secondary specificity of enteropeptidase in comparison with trypsin.
    Mikhailova AG; Likhareva VV; Vaskovsky BV; Garanin SK; Onoprienko LV; Prudchenko IA; Chikin LD; Rumsh LD
    Biochemistry (Mosc); 2004 Aug; 69(8):909-17. PubMed ID: 15377272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [New substrates for enteropeptidase. I. Biologically active hepta-nonapeptides].
    Likhareva VV; Vas'kovskiĭ BV; Shepel' NE; Garanin SK; Mikhaĭlova AG; Rumsh LD
    Bioorg Khim; 2003; 29(2):129-34. PubMed ID: 12708312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of calcium ions on enteropeptidase catalysis.
    Mikhailova AG; Likhareva VV; Prudchenko IA; Rumsh LD
    Biochemistry (Mosc); 2005 Oct; 70(10):1129-35. PubMed ID: 16271029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ways of realization of high specificity and efficiency of enteropeptidase.
    Mikhailova AG; Likhareva VV; Teich N; Rumsh LD
    Protein Pept Lett; 2007; 14(3):227-32. PubMed ID: 17346225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain.
    Lu D; Yuan X; Zheng X; Sadler JE
    J Biol Chem; 1997 Dec; 272(50):31293-300. PubMed ID: 9395456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hydrolysis by enteropeptidase of nonspecific (model) peptide sequences and possible physiological role of this phenomenon].
    Likhareva VV; Mikhaĭlova AG; Rumsh LD
    Vopr Med Khim; 2002; 48(6):561-9. PubMed ID: 12698555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide.
    Lu D; Fütterer K; Korolev S; Zheng X; Tan K; Waksman G; Sadler JE
    J Mol Biol; 1999 Sep; 292(2):361-73. PubMed ID: 10493881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autolysis of bovine enteropeptidase heavy chain: evidence of fragment 118-465 involvement in trypsinogen activation.
    Mikhailova AG; Rumsh LD
    FEBS Lett; 1999 Jan; 442(2-3):226-30. PubMed ID: 9929006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the active sites of bovine thrombin, factor IXa, factor Xa, factor XIa, factor XIIa, plasma kallikrein, and trypsin with amino acid and peptide thioesters: development of new sensitive substrates.
    McRae BJ; Kurachi K; Heimark RL; Fujikawa K; Davie EW; Powers JC
    Biochemistry; 1981 Dec; 20(25):7196-206. PubMed ID: 6976185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A rate-limiting stage of enteropeptidase hydrolysis].
    Mikhaĭlova AG; Likhareva VV; Rumsh LD
    Bioorg Khim; 2008; 34(2):204-9. PubMed ID: 18522276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of beta-casein hydrolysis by wild-type and engineered trypsin.
    Vorob'ev MM; Dalgalarrondo M; Chobert JM; Haertlé T
    Biopolymers; 2000 Oct; 54(5):355-64. PubMed ID: 10935975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the specific activation of human enteropeptidase.
    Brodrick JW; Largman C; Hsiang MW; Johnson JH; Geokas MC
    J Biol Chem; 1978 Apr; 253(8):2737-42. PubMed ID: 564906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular localization, substrate specificity and crystallization of duodenase, a potential activator of enteropeptidase.
    Zamolodchikova TS; Sokolova EA; Alexandrov SL; Mikhaleva II; Prudchenko IA; Morozov IA; Kononenko NV; Mirgorodskaya OA; Da U; Larionova NI; Pozdnev VF; Ghosh D; Duax WL; Vorotyntseva TI
    Eur J Biochem; 1997 Oct; 249(2):612-21. PubMed ID: 9370374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of artificial substrates by enterokinase and trypsin and the development of a sensitive specific assay for enterokinase in serum.
    Grant DA; Hermon-Taylor J
    Biochim Biophys Acta; 1979 Mar; 567(1):207-15. PubMed ID: 454624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the catalytic and binding sites of porcine enteropeptidase.
    Baratti J; Maroux S
    Biochim Biophys Acta; 1976 Dec; 452(2):488-96. PubMed ID: 12810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity studies on enteropeptidase substrates related to the N-terminus of trypsinogen.
    Jenö P; Green JR; Lentze MJ
    Biochem J; 1987 Feb; 241(3):721-7. PubMed ID: 3297038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting structural basis of the unique substrate selectivity of human enteropeptidase catalytic subunit.
    Ostapchenko VG; Gasparian ME; Kosinsky YA; Efremov RG; Dolgikh DA; Kirpichnikov MP
    J Biomol Struct Dyn; 2012; 30(1):62-73. PubMed ID: 22571433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy for improvement of enteropeptidase efficiency in tag removal processes.
    Gasparian ME; Bychkov ML; Dolgikh DA; Kirpichnikov MP
    Protein Expr Purif; 2011 Oct; 79(2):191-6. PubMed ID: 21515380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin.
    Kawabata S; Miura T; Morita T; Kato H; Fujikawa K; Iwanaga S; Takada K; Kimura T; Sakakibara S
    Eur J Biochem; 1988 Feb; 172(1):17-25. PubMed ID: 3278905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.