BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 15377381)

  • 1. Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins.
    Gartler SM; Varadarajan KR; Luo P; Canfield TK; Traynor J; Francke U; Hansen RS
    BMC Biol; 2004 Sep; 2():21. PubMed ID: 15377381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome.
    Martínez de Paz A; Ausió J
    Adv Exp Med Biol; 2017; 978():3-21. PubMed ID: 28523538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis.
    Hansen RS
    Hum Mol Genet; 2003 Oct; 12(19):2559-67. PubMed ID: 12925568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICF syndrome cells as a model system for studying X chromosome inactivation.
    Gartler SM; Hansen RS
    Cytogenet Genome Res; 2002; 99(1-4):25-9. PubMed ID: 12900541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lessons from two human chromatin diseases, ICF syndrome and Rett syndrome.
    Matarazzo MR; De Bonis ML; Vacca M; Della Ragione F; D'Esposito M
    Int J Biochem Cell Biol; 2009 Jan; 41(1):117-26. PubMed ID: 18786650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MeCP2 and other methyl-CpG binding proteins.
    Jørgensen HF; Bird A
    Ment Retard Dev Disabil Res Rev; 2002; 8(2):87-93. PubMed ID: 12112733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of MECP2 gene mutation and X-chromosome inactivation on the Rett syndrome phenotype.
    Chae JH; Hwang H; Hwang YS; Cheong HJ; Kim KJ
    J Child Neurol; 2004 Jul; 19(7):503-8. PubMed ID: 15526954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The essential role of histone H3 Lys9 di-methylation and MeCP2 binding in MGMT silencing with poor DNA methylation of the promoter CpG island.
    Zhao W; Soejima H; Higashimoto K; Nakagawachi T; Urano T; Kudo S; Matsukura S; Matsuo S; Joh K; Mukai T
    J Biochem; 2005 Mar; 137(3):431-40. PubMed ID: 15809347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome.
    Simo-Riudalbas L; Diaz-Lagares A; Gatto S; Gagliardi M; Crujeiras AB; Matarazzo MR; Esteller M; Sandoval J
    PLoS One; 2015; 10(7):e0132517. PubMed ID: 26161907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant.
    Hansen RS; Stöger R; Wijmenga C; Stanek AM; Canfield TK; Luo P; Matarazzo MR; D'Esposito M; Feil R; Gimelli G; Weemaes CM; Laird CD; Gartler SM
    Hum Mol Genet; 2000 Nov; 9(18):2575-87. PubMed ID: 11063717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite 2 methylation patterns in normal and ICF syndrome cells and association of hypomethylation with advanced replication.
    Hassan KM; Norwood T; Gimelli G; Gartler SM; Hansen RS
    Hum Genet; 2001 Oct; 109(4):452-62. PubMed ID: 11702227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation.
    Cheung AY; Horvath LM; Grafodatskaya D; Pasceri P; Weksberg R; Hotta A; Carrel L; Ellis J
    Hum Mol Genet; 2011 Jun; 20(11):2103-15. PubMed ID: 21372149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal shift in methyl-CpG binding protein 2 expression in a mouse model of Rett syndrome.
    Metcalf BM; Mullaney BC; Johnston MV; Blue ME
    Neuroscience; 2006; 139(4):1449-60. PubMed ID: 16549272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [X chromosome inactivation patterns in patients with Rett syndrome and their mothers and the parental origin of the priority inactive X chromosome].
    Jiang SL; Bao XH; Song FY; Pan H; Li MR; Wu XR
    Zhonghua Er Ke Za Zhi; 2006 Sep; 44(9):648-52. PubMed ID: 17217653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone H3 and H4 modification profiles in a Rett syndrome mouse model.
    Urdinguio RG; Pino I; Ropero S; Fraga MF; Esteller M
    Epigenetics; 2007; 2(1):11-4. PubMed ID: 17965622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome.
    Nan X; Bird A
    Brain Dev; 2001 Dec; 23 Suppl 1():S32-7. PubMed ID: 11738839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells.
    Koizume S; Tachibana K; Sekiya T; Hirohashi S; Shiraishi M
    Nucleic Acids Res; 2002 Nov; 30(21):4770-80. PubMed ID: 12409468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X chromosome inactivation in Rett Syndrome and its correlations with MECP2 mutations and phenotype.
    Xinhua Bao ; Shengling Jiang ; Fuying Song ; Hong Pan ; Meirong Li ; Wu XR
    J Child Neurol; 2008 Jan; 23(1):22-5. PubMed ID: 18184939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal methylation does not prevent X inactivation in ICF patients.
    Bourc'his D; Miniou P; Jeanpierre M; Molina Gomes D; Dupont J; De Saint-Basile G; Maraschio P; Tiepolo L; Viegas-Péquignot E
    Cytogenet Cell Genet; 1999; 84(3-4):245-52. PubMed ID: 10393442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA.
    Ballestar E; Yusufzai TM; Wolffe AP
    Biochemistry; 2000 Jun; 39(24):7100-6. PubMed ID: 10852707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.