These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 15378050)

  • 21. Absence of 2.5 power law for fractal packing in metallic glasses.
    Feng J; Chen P; Li M
    J Phys Condens Matter; 2018 Jun; 30(25):255402. PubMed ID: 29757165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observations of distinct atomic packings in Cu-Nb metallic glasses synthesized by ion beam mixing.
    Tai KP; Wang TL; Li JH; Liu BX
    J Phys Condens Matter; 2006 Sep; 18(37):L459-64. PubMed ID: 21690893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomistic modeling to optimize composition and characterize structure of Ni-Zr-Mo metallic glasses.
    Yang MH; Li SN; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 May; 17(20):13355-65. PubMed ID: 25923843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses.
    Zhang K; Smith WW; Wang M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032311. PubMed ID: 25314450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study.
    Sen S; Soyer Uzun S; Benmore CJ; Aitken BG
    J Phys Condens Matter; 2010 Oct; 22(40):405401. PubMed ID: 21386579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials.
    Di Tommaso D; Ainsworth RI; Tang E; de Leeuw NH
    J Mater Chem B; 2013 Oct; 1(38):5054-5066. PubMed ID: 32261096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inelastic and elastic mean free paths from FIB samples of metallic glasses.
    Schweiss DT; Hwang J; Voyles PM
    Ultramicroscopy; 2013 Jan; 124():6-12. PubMed ID: 23154031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of zirconium metallic glass.
    Zhang J; Zhao Y
    Nature; 2004 Jul; 430(6997):332-5. PubMed ID: 15254533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative expansions of interatomic distances in metallic melts.
    Lou H; Wang X; Cao Q; Zhang D; Zhang J; Hu T; Mao HK; Jiang JZ
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10068-72. PubMed ID: 23733928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid screening of potential metallic glasses for biomedical applications.
    Lin CH; Huang CH; Chuang JF; Huang JC; Jang JS; Chen CH
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4520-6. PubMed ID: 24094154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-temperature bulk metallic glasses developed by combinatorial methods.
    Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH
    Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T; Matsubara E; Chen HS; Saida J; Yamamoto T; Nishiyama N
    J Chem Phys; 2006 Oct; 125(15):154502. PubMed ID: 17059267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic glass nanostructures: fabrication, properties, and applications.
    Liu L; Hasan M; Kumar G
    Nanoscale; 2014 Feb; 6(4):2027-36. PubMed ID: 24384932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach.
    Salmon PS; Zeidler A
    Phys Chem Chem Phys; 2013 Oct; 15(37):15286-308. PubMed ID: 23938952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the glass forming ability of liquid alloys.
    Waseda Y; Chen HS; Thomas Jacob K; Shibata H
    Sci Technol Adv Mater; 2008 Apr; 9(2):023003. PubMed ID: 27877951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bulk metallic glass-like scattering signal in small metallic nanoparticles.
    Doan-Nguyen VV; Kimber SA; Pontoni D; Reifsnyder Hickey D; Diroll BT; Yang X; Miglierini M; Murray CB; Billinge SJ
    ACS Nano; 2014 Jun; 8(6):6163-70. PubMed ID: 24871305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct observation of local atomic order in a metallic glass.
    Hirata A; Guan P; Fujita T; Hirotsu Y; Inoue A; Yavari AR; Sakurai T; Chen M
    Nat Mater; 2011 Jan; 10(1):28-33. PubMed ID: 21102454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses.
    Lan S; Ren Y; Wei XY; Wang B; Gilbert EP; Shibayama T; Watanabe S; Ohnuma M; Wang XL
    Nat Commun; 2017 Mar; 8():14679. PubMed ID: 28303882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallic liquids and glasses: atomic order and global packing.
    Liu XJ; Xu Y; Hui X; Lu ZP; Li F; Chen GL; Lu J; Liu CT
    Phys Rev Lett; 2010 Oct; 105(15):155501. PubMed ID: 21230918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.