BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 1537826)

  • 1. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications.
    Vander Jagt DL; Hassebrook RK; Hunsaker LA; Brown WM; Royer RE
    Chem Biol Interact; 2001 Jan; 130-132(1-3):549-62. PubMed ID: 11306074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase.
    Vander Jagt DL; Hunsaker LA
    Chem Biol Interact; 2003 Feb; 143-144():341-51. PubMed ID: 12604221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate.
    Vander Jagt DL; Kolb NS; Vander Jagt TJ; Chino J; Martinez FJ; Hunsaker LA; Royer RE
    Biochim Biophys Acta; 1995 Jun; 1249(2):117-26. PubMed ID: 7599164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.
    Cook PN; Ward WH; Petrash JM; Mirrlees DJ; Sennitt CM; Carey F; Preston J; Brittain DR; Tuffin DP; Howe R
    Biochem Pharmacol; 1995 Apr; 49(8):1043-9. PubMed ID: 7748183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity of reduced and oxidized forms of human aldose reductase.
    Vander Jagt DL; Hunsaker LA
    Adv Exp Med Biol; 1993; 328():279-88. PubMed ID: 8493905
    [No Abstract]   [Full Text] [Related]  

  • 7. Reduction of methylglyoxal in Escherichia coli K12 by an aldehyde reductase and alcohol dehydrogenase.
    Misra K; Banerjee AB; Ray S; Ray M
    Mol Cell Biochem; 1996 Mar; 156(2):117-24. PubMed ID: 9095467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue.
    Baba SP; Barski OA; Ahmed Y; O'Toole TE; Conklin DJ; Bhatnagar A; Srivastava S
    Diabetes; 2009 Nov; 58(11):2486-97. PubMed ID: 19651811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolism of acetone in rat.
    Casazza JP; Felver ME; Veech RL
    J Biol Chem; 1984 Jan; 259(1):231-6. PubMed ID: 6706932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldose reductase-catalyzed reduction of acrolein: implications in cyclophosphamide toxicity.
    Kolb NS; Hunsaker LA; Vander Jagt DL
    Mol Pharmacol; 1994 Apr; 45(4):797-801. PubMed ID: 8183257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat aldose reductase-like protein (AKR1B14) efficiently reduces the lipid peroxidation product 4-oxo-2-nonenal.
    Endo S; Matsunaga T; Fujita A; Tajima K; El-Kabbani O; Hara A
    Biol Pharm Bull; 2010; 33(11):1886-90. PubMed ID: 21048316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of human aldehyde reductase: characterization of the active site pocket.
    Barski OA; Gabbay KH; Grimshaw CE; Bohren KM
    Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized aldose reductase: in vivo factor not in vitro artifact.
    Grimshaw CE; Lai CJ
    Arch Biochem Biophys; 1996 Mar; 327(1):89-97. PubMed ID: 8615700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of aldose reductase and aldehyde reductase from human kidney.
    Ansari NH; Bhatnagar A; Liu SQ; Srivastava SK
    Biochem Int; 1991 Nov; 25(4):755-65. PubMed ID: 1815509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of human erythrocyte, brain, aorta, muscle, and ocular tissue aldose reductase.
    Srivastava SK; Ansari NH; Hair GA; Awasthi S; Das B
    Metabolism; 1986 Apr; 35(4 Suppl 1):114-8. PubMed ID: 3083202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms.
    Vander Jagt DL; Hunsaker LA; Robinson B; Stangebye LA; Deck LM
    J Biol Chem; 1990 Jul; 265(19):10912-8. PubMed ID: 2113526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Auiyawong B; Narawongsanont R; Tantitadapitak C
    Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues affecting the catalysis and inhibition of rat lens aldose reductase.
    Carper DA; Hohman TC; Old SE
    Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of sorbitol metabolism in renal inner medulla of diabetic rats: regulation by substrate, cosubstrate and products of the aldose reductase reaction.
    Grunewald RW; Weber II; Kinne-Saffran E; Kinne RK
    Biochim Biophys Acta; 1993 Nov; 1225(1):39-47. PubMed ID: 8241288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG
    Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.