These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15378330)

  • 1. Adaptive control for insect leg position: controller properties depend on substrate compliance.
    Cruse H; Kühn S; Park S; Schmitz J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Dec; 190(12):983-91. PubMed ID: 15378330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position.
    Brunn DE; Dean J
    J Neurophysiol; 1994 Sep; 72(3):1208-19. PubMed ID: 7807205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
    Hooper SL; Guschlbauer C; Blümel M; Rosenbaum P; Gruhn M; Akay T; Büschges A
    J Neurosci; 2009 Apr; 29(13):4109-19. PubMed ID: 19339606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes.
    Ebeling W; Dürr V
    J Exp Biol; 2006 Jun; 209(Pt 11):2199-214. PubMed ID: 16709921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force feedback reinforces muscle synergies in insect legs.
    Zill SN; Chaudhry S; Büschges A; Schmitz J
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):541-53. PubMed ID: 26193626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
    Zill SN; Büschges A; Schmitz J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):851-67. PubMed ID: 21544617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
    Zill SN; Neff D; Chaudhry S; Exter A; Schmitz J; Büschges A
    Arthropod Struct Dev; 2017 Jul; 46(4):564-578. PubMed ID: 28552666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
    Akay T; Haehn S; Schmitz J; Büschges A
    J Neurophysiol; 2004 Jul; 92(1):42-51. PubMed ID: 14999042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
    Akay T; Bässler U; Gerharz P; Büschges A
    J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive force feedback in development of substrate grip in the stick insect tarsus.
    Zill SN; Chaudhry S; Exter A; Büschges A; Schmitz J
    Arthropod Struct Dev; 2014 Sep; 43(5):441-55. PubMed ID: 24951882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single perturbations cause sustained changes in searching behavior in stick insects.
    Berg E; Büschges A; Schmidt J
    J Exp Biol; 2013 Mar; 216(Pt 6):1064-74. PubMed ID: 23197090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.
    DiCaprio RA; Wolf H; Büschges A
    J Neurophysiol; 2002 Nov; 88(5):2387-98. PubMed ID: 12424280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force encoding in stick insect legs delineates a reference frame for motor control.
    Zill SN; Schmitz J; Chaudhry S; Büschges A
    J Neurophysiol; 2012 Sep; 108(5):1453-72. PubMed ID: 22673329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A load-based mechanism for inter-leg coordination in insects.
    Dallmann CJ; Hoinville T; Dürr V; Schmitz J
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29187626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.