These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15378375)

  • 1. Mechanical model of the recovery from stumbling.
    Cordero AF; Koopman HJ; van der Helm FC
    Biol Cybern; 2004 Oct; 91(4):212-20. PubMed ID: 15378375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy analysis of human stumbling: the limitations of recovery.
    Forner Cordero A; Koopman HJ; van der Helm FC
    Gait Posture; 2005 Apr; 21(3):243-54. PubMed ID: 15760739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple-step strategies to recover from stumbling perturbations.
    Forner Cordero A; Koopman HF; van der Helm FC
    Gait Posture; 2003 Aug; 18(1):47-59. PubMed ID: 12855300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stumbling over obstacles in older adults compared to young adults.
    Schillings AM; Mulder T; Duysens J
    J Neurophysiol; 2005 Aug; 94(2):1158-68. PubMed ID: 15615837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations.
    Weerdesteyn V; Laing AC; Robinovitch SN
    Gait Posture; 2012 Mar; 35(3):462-6. PubMed ID: 22196309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral stability of the spring-mass hopper suggests a two-step control strategy for running.
    Carver SG; Cowan NJ; Guckenheimer JM
    Chaos; 2009 Jun; 19(2):026106. PubMed ID: 19566266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular responses and movement strategies during stumbling over obstacles.
    Schillings AM; van Wezel BM; Mulder T; Duysens J
    J Neurophysiol; 2000 Apr; 83(4):2093-102. PubMed ID: 10758119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trip recovery strategies following perturbations of variable duration.
    Shirota C; Simon AM; Kuiken TA
    J Biomech; 2014 Aug; 47(11):2679-84. PubMed ID: 24894024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical analysis of the preferred strategy selection in human stumble recovery.
    de Boer T; Wisse M; van der Helm FC
    J Biomech Eng; 2010 Jul; 132(7):071012. PubMed ID: 20590290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the body centre of mass during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors leading to falls in transfemoral prosthesis users: a case series of prosthesis-side stumble recovery responses.
    King ST; Eveld ME; Zelik KE; Goldfarb M
    J Neuroeng Rehabil; 2024 Jul; 21(1):117. PubMed ID: 39003469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance.
    Pinter IJ; van Swigchem R; van Soest AJ; Rozendaal LA
    J Neurophysiol; 2008 Dec; 100(6):3197-208. PubMed ID: 18829852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a sensory perturbation on step direction or length while crossing an obstacle from quiet stance.
    Kim HD; Brunt D
    Gait Posture; 2009 Jul; 30(1):1-4. PubMed ID: 19346130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of strategy selection, limb force capacity and limb positioning in successful trip recovery.
    Roos PE; McGuigan MP; Trewartha G
    Clin Biomech (Bristol, Avon); 2010 Nov; 25(9):873-8. PubMed ID: 20667634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaze behavior governing balance recovery in an unfamiliar and complex environment.
    Zettel JL; Scovil CY; McIlroy WE; Maki BE
    Neurosci Lett; 2007 Jul; 422(3):207-12. PubMed ID: 17611033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors leading to falls in transfemoral prosthesis users: a case series of sound-side stumble recovery responses.
    Eveld ME; King ST; Zelik KE; Goldfarb M
    J Neuroeng Rehabil; 2022 Sep; 19(1):101. PubMed ID: 36151561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of EMG activity and temporal components of gait during recovery from perturbation.
    Brunt D; Williams J; Rice RR
    Arch Phys Med Rehabil; 1990 Jun; 71(7):473-7. PubMed ID: 2350215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.