These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 15379002)
1. Wastewater treatment polymers identified as the toxic component of a diamond mine effluent. De Rosemond SJ; Liber K Environ Toxicol Chem; 2004 Sep; 23(9):2234-42. PubMed ID: 15379002 [TBL] [Abstract][Full Text] [Related]
2. Sublethal toxicity of two wastewater treatment polymers to lake trout fry (Salvelinus namaycush). Liber K; Weber L; Lévesque C Chemosphere; 2005 Dec; 61(8):1123-33. PubMed ID: 16263382 [TBL] [Abstract][Full Text] [Related]
3. Bicarbonate toxicity to Ceriodaphnia dubia and the freshwater shrimp Paratya australiensis and its influence on zinc toxicity. Vera CL; Hyne RV; Patra R; Ramasamy S; Pablo F; Julli M; Kefford BJ Environ Toxicol Chem; 2014 May; 33(5):1179-86. PubMed ID: 24497317 [TBL] [Abstract][Full Text] [Related]
4. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent. Brix KV; Gerdes R; Grosell M Ecotoxicol Environ Saf; 2010 Oct; 73(7):1646-52. PubMed ID: 20621355 [TBL] [Abstract][Full Text] [Related]
5. A screening method for toxicity identification evaluation on an industrial effluent using Chelex-100 resin and chelators for specific metals. Onikura N; Kishi K; Nakamura A; Takeuchi S Environ Toxicol Chem; 2008 Feb; 27(2):266-71. PubMed ID: 18348643 [TBL] [Abstract][Full Text] [Related]
6. Identifying the causes of oil sands coke leachate toxicity to aquatic invertebrates. Puttaswamy N; Liber K Environ Toxicol Chem; 2011 Nov; 30(11):2576-85. PubMed ID: 21898553 [TBL] [Abstract][Full Text] [Related]
7. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007 [TBL] [Abstract][Full Text] [Related]
8. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. Neculita CM; Vigneault B; Zagury GJ Environ Toxicol Chem; 2008 Aug; 27(8):1659-67. PubMed ID: 18290688 [TBL] [Abstract][Full Text] [Related]
9. A Cautionary Note: Ceriodaphnia dubia Inter-Laboratory Test Variability. Pacholski L; Chapman P; Hood A; Peters M Bull Environ Contam Toxicol; 2017 Jan; 98(1):53-57. PubMed ID: 27722856 [TBL] [Abstract][Full Text] [Related]
10. Toxicity identification and evaluation for the effluent from a nonmetallic mineral mining facility in Korea using D. magna. Lee S; Ha H; Hong J; Kang G; Hong C Toxicol Ind Health; 2017 Sep; 33(9):681-686. PubMed ID: 28812956 [TBL] [Abstract][Full Text] [Related]
11. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss). Naddy RB; Cohen AS; Stubblefield WA Environ Toxicol Chem; 2015 Apr; 34(4):809-15. PubMed ID: 25641563 [TBL] [Abstract][Full Text] [Related]
12. [Toxicity identification evaluation on efficiency of chemical effluent treatment]. Yang Y; Yu H; Cui Y; Jin H; Tang S; Zhou C Ying Yong Sheng Tai Xue Bao; 2003 Jan; 14(1):105-9. PubMed ID: 12722450 [TBL] [Abstract][Full Text] [Related]
13. Acute and chronic toxicity of effluent water from an abandoned uranium mine. Antunes SC; Pereira R; Gonçalves F Arch Environ Contam Toxicol; 2007 Aug; 53(2):207-13. PubMed ID: 17587142 [TBL] [Abstract][Full Text] [Related]
14. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation. Zeng Y; Yang C; Zhang J; Pu W J Hazard Mater; 2007 Aug; 147(3):991-6. PubMed ID: 17350754 [TBL] [Abstract][Full Text] [Related]
15. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. influence of background water chemistry. Mount DR; Erickson RJ; Highland TL; Hockett JR; Hoff DJ; Jenson CT; Norberg-King TJ; Peterson KN; Polaske ZM; Wisniewski S Environ Toxicol Chem; 2016 Dec; 35(12):3039-3057. PubMed ID: 27167636 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays. Netto E; Madeira RA; Silveira FZ; Fiori MA; Angioleto E; Pich CT; Geremias R Environ Toxicol Pharmacol; 2013 May; 35(3):511-6. PubMed ID: 23518284 [TBL] [Abstract][Full Text] [Related]
17. Tannery wastewater characterization and toxicity effects on Daphnia spp. Cooman K; Gajardo M; Nieto J; Bornhardt C; Vidal G Environ Toxicol; 2003 Feb; 18(1):45-51. PubMed ID: 12539143 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia. Kennedy AJ; Cherry DS; Zipper CE Arch Environ Contam Toxicol; 2005 Aug; 49(2):155-62. PubMed ID: 16001150 [TBL] [Abstract][Full Text] [Related]
19. Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure. Hernández-Zamora M; Martínez-Jerónimo F; Cristiani-Urbina E; Cañizares-Villanueva RO Ecotoxicology; 2016 Dec; 25(10):1832-1840. PubMed ID: 27670667 [TBL] [Abstract][Full Text] [Related]
20. Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. Soucek DJ Environ Toxicol Chem; 2007 Apr; 26(4):773-9. PubMed ID: 17447563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]